神戸大 複素数 三次方程式 - 質問解決D.B.(データベース)

神戸大 複素数 三次方程式

問題文全文(内容文):
$z^3-2|z|+1=0$を満たす$z$のうち実数でないものの個数を求めよ

出典:1968年神戸大学 過去問
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3-2|z|+1=0$を満たす$z$のうち実数でないものの個数を求めよ

出典:1968年神戸大学 過去問
投稿日:2020.03.17

<関連動画>

複素数の5次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.($\sin,\cos$は使わない)
$x^5=i$
この動画を見る 

2022九州大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.

2022九州大過去問
この動画を見る 

福田のおもしろ数学408〜変数が素数である連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
pq=r+1 \\
2(p^2+q^2)=r^2+1
\end{array}
\right.
\end{eqnarray}$

を満たす素数$p,q,r$を求めて下さい。
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 

【数Ⅱ】複素数と方程式:解の公式は係数が実数のときのみ使用可能

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよう。
$(2+i)x^2-(1+6i)x-2(3-4i)=0$
この動画を見る 
PAGE TOP