【中学数学】平行四辺形の定義と性質~どこよりも分かりやすく~【中2数学】 - 質問解決D.B.(データベース)

【中学数学】平行四辺形の定義と性質~どこよりも分かりやすく~【中2数学】

問題文全文(内容文):
平行四辺形の定義と性質
わかりやすく解説します
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平行四辺形の定義と性質
わかりやすく解説します
投稿日:2023.04.21

<関連動画>

中2数学「連立方程式と解」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第11回連立方程式と解~

例題次のア~ウの中で、連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=8 \\
5x-3y=7
\end{array}
\right.
\end{eqnarray}$
の解はどれか?

ア $x=4,y=-2$
イ $x=5,y=6$
ウ $x=2,y=1$
この動画を見る 

【高校受験対策】数学-確率5

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の図のような、1辺が2の正方形$ABCD$があり、頂点$D$に点$P$、頂点$A$に
点$Q$がある。
赤と白の2個のさいころを同時に1回投げて、
赤いさいころの出た目の数だけ$P$を左回りに頂点から頂点へ移動させ、
白いさいころの出た目の数だけ$Q$を左回りに頂点から頂点へ移動させる。
たとえば、赤いさいころの出た目が1、白いさいころの出た目が2のときは、
$P$を$D→A$、$Q$を$A→B→C$と移動させる。
このとき、次の問に答えなさい。

①赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の位置が頂点$B$で、$Q$の位置が頂点$D$になる確率を求めなさい。

②赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$△APQ$の面積が2になる確率を求めなさい。

③表1のように、各頂点の点数を決め、$P、Q$の移動後の位置に応じてそれぞれ点数を与える。
赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の点数が$Q$の点数より高くなる確率を求めなさい。

図は動画内参照
この動画を見る 

【数学】中2-60 証明のしくみ

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\boxed{1}$
[仮]・・・①______
[結]・・・②______
$\boxed{2}$どれとどれの合同でやるの?
③______と______
$\boxed{3}$すでに同じだと分かっている辺と角に印をつける。
④右上の図に印をつけよう!
$\boxed{4}$合同条件を決める。
⑤_________________
$\boxed{5}$書く!!

⑥$AO=CO,\triangle OAB= \triangle OCD$ならば、
$AB=CD$であることを証明しよう!

【宣言】
_________________で
【理由】
____より _________________・・・①
_________________・・・②
____より _________________・・・③

【合同条件】
①、②、③より _________________から
_________________
【結論】
____より _________________
※図は動画内参照
この動画を見る 

文字3つ 式3つの連立方程式 開成高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z = \frac{1}{6} \\
2x + y - z = - \frac{1}{2} \\
x + 3y +2z = \frac{1}{6}
\end{array}
\right.
\end{eqnarray}

開成高等学校
この動画を見る 

【中学数学】作図の演習~奈良県公立高校入試2019【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)#奈良県公立高等学校
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図の四角形ABCDは、並行四辺形である。
辺AD上に、ED=$\displaystyle \frac{1}{2}$DCとなる点Eを定規とコンパスを使って作図せよ。
なお、作図に使った線は消さずに残しておくこと。
この動画を見る 
PAGE TOP