20三重県教員採用試験(数学:1-(3) 対数) - 質問解決D.B.(データベース)

20三重県教員採用試験(数学:1-(3) 対数)

問題文全文(内容文):
$\boxed{1}-(3)$
$x \geq 3,y \geq \dfrac{1}{3},xy^2=243$
のとき
$\left(\log_3 x\right)\left(\log_3 y\right)$
の最大値,最小値を求めよ.
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x \geq 3,y \geq \dfrac{1}{3},xy^2=243$
のとき
$\left(\log_3 x\right)\left(\log_3 y\right)$
の最大値,最小値を求めよ.
投稿日:2021.07.09

<関連動画>

14京都府教員採用試験(数学:4番 3次方程式)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$x^3+(a+4)x^2+(a+2)x-2a-7=0$
が異なる3つの実数解をもつように
定数$a$の値の範囲を求めよ.
この動画を見る 

07神奈川県教員採用試験(数学:9番 領域と最小値)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
$x^2+xy-2y^2+6y-4\geqq 0$

$x^2+y^2$の最小値を求めよ.
この動画を見る 

12大阪府教員採用試験(数学:1 2 指数の方程式)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(2)$
$10^x=50^{y-1}$を
みたす有理数$x,y$を求めよ.
この動画を見る 

12京都府教員採用試験(数学:1番 解の個数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$a\in IR$とする.
$\log_{2} (x+1)-\log+(2x-a+3)-1=0$が
異なる2つの解をもつ
$a$の値の範囲を求めよ.
この動画を見る 

15和歌山県教員採用試験(数学:1 -(7) 対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(7)$

$\log_{10}2=a,\log_{10}3=b$とする.
$\log_{3}32$を$a,b$で表せ.
この動画を見る 
PAGE TOP