20三重県教員採用試験(数学:1-(3) 対数) - 質問解決D.B.(データベース)

20三重県教員採用試験(数学:1-(3) 対数)

問題文全文(内容文):
$\boxed{1}-(3)$
$x \geq 3,y \geq \dfrac{1}{3},xy^2=243$
のとき
$\left(\log_3 x\right)\left(\log_3 y\right)$
の最大値,最小値を求めよ.
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x \geq 3,y \geq \dfrac{1}{3},xy^2=243$
のとき
$\left(\log_3 x\right)\left(\log_3 y\right)$
の最大値,最小値を求めよ.
投稿日:2021.07.09

<関連動画>

14和歌山県教員採用試験(数学:3番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
(i)$f`(x):$連続
(ii)$f(x)=\displaystyle \int_{1}^{x} (x-t)f`(t)dt+3x+1$
(iii)(ii)をみたす$f(x)$を求めよ.
この動画を見る 

12京都府教員採用試験(数学:2番 接線系)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$

(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
この動画を見る 

20和歌山県教員採用試験(数学:5番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$

$x^2-7x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-7^n$は
5の倍数であることを示せ.
この動画を見る 

13和歌山県教員採用試験(数学:3番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$0\leqq x\lt 2\pi$である.
$f(x)=\sin x+\cos x+\sqrt 2 \sin x \cos x$の
最大値,最小値とそのときの$x$の値を求めよ.
この動画を見る 

11和歌山県教員採用試験(数学:4番 微分と微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f(x)$:微分可能
任意の実数$x,y$に対して
$f(x+y)=f(x),f(y),f`(0)=2$

(1)$f(0)$を求めよ.
(2)$f(x)$を求めよ.
この動画を見る 
PAGE TOP