【高校数学】数Ⅲ-86 関数の連続性① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-86 関数の連続性①

問題文全文(内容文):
(1)次の不等式を満たす実数$x$の値の範囲を、区間で示す記号で示せ。

①$3\lt x \lt 7$

②$-2 \leqq x \leqq 0$

③$-4 \lt x \leqq 5$

④$x \geqq 12$

(2)次の関数が連続である区間を求めよ。

⑤$f(x)=\sqrt{-3x+2}$

⑥$f(x)=\dfrac{x^2+1}{x^2-3x+2}$

⑦$f(x)=\log_2 \vert x \vert$
単元: #関数と極限#微分とその応用#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
(1)次の不等式を満たす実数$x$の値の範囲を、区間で示す記号で示せ。

①$3\lt x \lt 7$

②$-2 \leqq x \leqq 0$

③$-4 \lt x \leqq 5$

④$x \geqq 12$

(2)次の関数が連続である区間を求めよ。

⑤$f(x)=\sqrt{-3x+2}$

⑥$f(x)=\dfrac{x^2+1}{x^2-3x+2}$

⑦$f(x)=\log_2 \vert x \vert$
投稿日:2018.04.07

<関連動画>

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

$\frac{x^2}{36}-\frac{y^2}{64}=-1$

の焦点の座標を求めなさい。


次の極限値を求めなさい。

$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る 

【数Ⅲ】【関数と極限】次の方程式の実数解の存在する区間をすべて求めよ。ただし、区間は幅1の開区間とし、その両端は整数値とする。(1) 2x³+3x²-12x-3=0(2) x³+x²-2x-1=0

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式の実数解の存在する区間をすべて求めよ。ただし、区間は幅1の
開区間とし、その両端は整数値とする。
(1) 2x³+3x²-12x-3=0
(2) x³+x²-2x-1=0
この動画を見る 

【数Ⅲ】【関数と極限】次の関数f(x)において、定義されないxの値、不連続であるxの値をいえ。(1) f(x)=x²-2x-3/x-3(2) f(x)=x³/|x|(3) f(x)=[|cosx|]

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数 f(x) において、定義されない x の値、
不連続である x の値をいえ。
また、それらの x の値で、関数の値を改めて定義し、
すべての実数 x で連続になるようにせよ。

(1) $f(x)=\frac{x^2-2x-3}{x-3}$

(2) $f(x)=\frac{x^3}{|x|}$

(3) $f(x)=[[ \cos x ]]$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

大学入試問題#409「3乗根の極限きた~~~」 産業医科大学2019 #極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\sqrt[ 3 ]{ n^9-n^6 }-n^3)$

出典:2019年産業医科大学 入試問題
この動画を見る 
PAGE TOP