対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】

問題文全文(内容文):
$log y (6x+y) =x$
を満たす正の整数の組を求めよ

一橋大過去問
チャプター:

00:04 問題文
00:41 本問題の解説・解答
07:17 次回の問題

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$log y (6x+y) =x$
を満たす正の整数の組を求めよ

一橋大過去問
投稿日:2022.11.23

<関連動画>

【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る 

防衛医大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{1+\sqrt{ 3 }i}{2},\beta=\displaystyle \frac{1-\sqrt{ 3 }i}{2}$

$\gamma=\displaystyle \frac{\beta^2-4\beta +3}{\alpha^{n+2}-\alpha^{n+1}+\alpha^{n}+\alpha^{3}-2\alpha^{2}+5\alpha-2}$

$\gamma^3$の値を求めよ

出典:2011年防衛医科大学校 過去問
この動画を見る 

大学入試問題#845「気持ち応用か!?」 #電気通信大学(2020) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=n+1}^{2n} \displaystyle \frac{n}{k^2+3kn+2n^2}$

出典:2020年電気通信大学
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(3)〜領域における最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$xy$平面上に連立不等式$x$+$y$≦4, $5x$-$7y$≧-40, $x$-$3y$≦-8 の表す領域Dがある。点P($x$,$y$)がD内を動くとき、$x^2$+$y^2$の最小値は$\boxed{\ \ キ\ \ }$であり、最大値は$\boxed{\ \ ク\ \ }$である。
この動画を見る 

福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数$m,n$があり、$1\lt m\lt n$とする。

$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$

を満たす$(m,n)$を求めよ。

2023明治大学過去問
この動画を見る 
PAGE TOP