#玉川大学#不定積分#ますただ - 質問解決D.B.(データベース)

#玉川大学#不定積分#ますただ

問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int e^{\sin x} \sin2x$ $dx$

出典:玉川大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int e^{\sin x} \sin2x$ $dx$

出典:玉川大学
投稿日:2024.07.19

<関連動画>

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$自然数$a,b$に対し、3次関数$f_{a,b}(x),g_{a,b}(x)$を
$f_{a,b}(x)=x^3+3ax^2+3bx+8$
$g_{a,b}(x)=8x^3+3bx^2+3ax+1$
で定める。次の問いに答えよ。
(1)次の条件$(\textrm{I})(\textrm{II})$の両方を満たす自然数の組(a,b)
で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{I})f_{a,b}(x)$が極値をもつ
$(\textrm{II})g_{a,b}(x)$が極値をもつ
(2)3次方程式$f_{a,b}(x)=0$の3つの解が$\alpha,\beta,\gamma$であるとき
3次方程式$g_{a,b}(x)=0$の解を$\alpha,\beta,\gamma$で表せ。
(3)次の条件$(\textrm{III})$を満たす自然数の組$(a,b)$で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{III})$3次方程式$f_{a,b}(x)=0$が相異なる3つの実数解をもつ。

2022早稲田大学教育学部過去問
この動画を見る 

#茨城大学2024#区分求積法_5#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{3}}\displaystyle \sum_{k=1}^n (n-k)^2$

出典:2024年茨城大学
この動画を見る 

鹿児島大(医)連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=2a_n+3b_n-2$
$b_{n+1}=a_n+4b_n+2$

一般項$a_n$を求めよ

出典:2017年鹿児島大学医学部 過去問
この動画を見る 

2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
方程式 $(x^{3}-x)^{2}(y^{3}-y)$=86400

を満たす整数の組$(x,y)$をすべて求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。

$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$

この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。

(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。

(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。

(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。

(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP