【受験対策】 数学-小問① - 質問解決D.B.(データベース)

【受験対策】 数学-小問①

問題文全文(内容文):
◎次の計算をしよう。

①$-5-8 \times \displaystyle \frac{1}{4}$

②$-3+5 \times (-1)^3$

③$4(2x-y)-3(x+y)$

④$\displaystyle \frac{1}{2}(3a-2b)-(2a-b)$

⑤一次方程式$x-7=9(x+1)$を解こう。

⑥等式$2a-3b=1$を$b$について解こう。

⑦等式$a=\displaystyle \frac{b+c}{2}$をcについて解こう。
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。

①$-5-8 \times \displaystyle \frac{1}{4}$

②$-3+5 \times (-1)^3$

③$4(2x-y)-3(x+y)$

④$\displaystyle \frac{1}{2}(3a-2b)-(2a-b)$

⑤一次方程式$x-7=9(x+1)$を解こう。

⑥等式$2a-3b=1$を$b$について解こう。

⑦等式$a=\displaystyle \frac{b+c}{2}$をcについて解こう。
投稿日:2015.05.29

<関連動画>

【受験対策】 数学-小問②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。
①$-\displaystyle \frac{1}{7}+\displaystyle \frac{2}{5}$

②$2a+\displaystyle \frac{a}{3}$

③$(-4)^2+8 \div (-2)$

④$2a+b-\displaystyle \frac{2a+b}{3}$

⑤$8x^4y^3 \div 4xy^2$

⑥方程式$\displaystyle \frac{4x+5}{3}=x$を解こう。

⑦$2x-5y=7$を$x$について解こう。

⑧$x=\displaystyle \frac{4}{5},y=-2$のとき、$3(4x-y)-(2x-5y)$の値を求めよう。
この動画を見る 

【中学数学】数学用語チェック絵本 act2 vol.1 式の計算

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
中2 連立方程式の単元の用語をチェック!
この動画を見る 

正負の数の計算、工夫しよう!膳所高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$42.9 \times \frac{5}{13} - 14.3 \times (\frac{7}{26} - \frac{1}{13} + \frac{1}{2})$
膳所高等学校
この動画を見る 

【高校数学】定期テスト直前対策!個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解〜【数学のコツ】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
個別指導プロ講師が厳選したプレテスト〜多項式の展開、因数分解を解説していきます.
この動画を見る 

【高校受験対策/数学】死守57

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57

①$6\times (-3)$を計算しなさい。

②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。

③$a^2b×21b \div 7a$を計算しなさい。

④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。

⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。

⑥二次方程式$x^2+5x+5=0$を解きなさい。

⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。

ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。

⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る 
PAGE TOP