2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】

問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$を満たす整数の組(x,y)を求めよ

東工大過去問
チャプター:

00:04 問題文
01:18 解答・解説
09:03 次回の問題

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$を満たす整数の組(x,y)を求めよ

東工大過去問
投稿日:2023.03.17

<関連動画>

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

福田の数学〜北海道大学2023年文系第4問〜円と放物線の共通接線と囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ qを実数とする。座標平面上に円C:$x^2$+$y^2$=1と放物線P:y=$x^2$+q がある。
(1)CとPに同じ点で接する傾き正の直線が存在するとき、qの値およびその接点の座標を求めよ。
(2)(1)で求めたqの値を$q_1$、接点のy座標を$y_1$とするとき、連立不等式
$\left\{\begin{array}{1}
x^2+y^2≧1\\
y≧x^2+q_1\\
y≦y_1\\
\end{array}\right.$
の表す領域の面積を求めよ。

2023北海道大学文系過去問
この動画を見る 

鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学

$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$

$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積

この動画を見る 

岡山県立大 整数問題 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数

(1)
$n(n^2+5)$は6の倍数であることを示せ

(2)
$3^{6n}$を7で割ると余りが1であることを示せ

出典:2008年岡山県立大学 過去問
この動画を見る 

東北大 3次方程式 整数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-(p-3)x^2-3x+p-1=0$の3つの解がすべて整数となるような実数$p$を求めよ

出典:2000年東北大学 過去問
この動画を見る 
PAGE TOP