問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
チャプター:
0:00 問題1(1)の解説
3:09 問題1(2)の解説
5:13 問題2の解説
8:11 問題3(1)の解説
11:55 問題3(2)の解説
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
投稿日:2025.02.02