大学入試問題#806「The 良問!」 兵庫県立大学中期(2014) #微積の応用 - 質問解決D.B.(データベース)

大学入試問題#806「The 良問!」 兵庫県立大学中期(2014) #微積の応用

問題文全文(内容文):
微分可能な関数$f(x)$が
$f(x)=\displaystyle \int_{0}^{x} \sqrt{ f(t)^2+1 }\ dt$を満たすとする。
このとき以下の問いに答えよ。
1.$f'(x)$と$f''(x)$を$f(x)$で表せ。
2.関数$log(f(x)+f'(x))$を求めよ。
3.$f(x)$を求めよ。

出典:2014年兵庫県立大学中期 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
微分可能な関数$f(x)$が
$f(x)=\displaystyle \int_{0}^{x} \sqrt{ f(t)^2+1 }\ dt$を満たすとする。
このとき以下の問いに答えよ。
1.$f'(x)$と$f''(x)$を$f(x)$で表せ。
2.関数$log(f(x)+f'(x))$を求めよ。
3.$f(x)$を求めよ。

出典:2014年兵庫県立大学中期 入試問題
投稿日:2024.05.01

<関連動画>

福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。複素数$z$が$|z-1|=a$かつ$z\neq \frac{1}{2}$を満たしながら
動くとき、複素数平面上の点$w=\frac{z-3}{1-2z}$が描く図形をKとする。
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

福田の数学〜青山学院大学2025理工学部第2問〜虚数係数の2次方程式の解と正方形の頂点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$i$を虚数単位とする。

複素数$z$についての方程式

$z^2-4iz=4\sqrt3 i \ \cdots (*)$

の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、

$\alpha,\beta$が表す複素数平面上の点を

それぞれ$A,B$とする。

(1)方程式$(*)$は

$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$

と表せるので

$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。

(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。

また、線分$AB$を対角線とする正方形の

残りの$2$頂点を表す複素数は

$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と

$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第4問〜復元抽出と非復元抽出の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
箱の中に1文字ずつ書かれたカードが10枚ある。そのうち5枚にはA、
3枚にはB、2枚にはCと書かれている。箱から1枚ずつ、3回カードを
取り出す試行を考える。
(1)カードを取り出すごとに箱に戻す場合、1回目と3回目に取り出したカード
の文字が一致する確率を求めよ。
(2)取り出したカードを箱に戻さない場合、1回目と3回目に取り出したカード
の文字が一致する確率を求めよ。
(3)取り出したカードを箱に戻さない場合、2回目に取り出したカードの文字が
Cであるとき、1回目と3回目に取り出したカードの文字が一致する
条件つき確率を求めよ。

2022北海道大学文系過去問
この動画を見る 

大学入試問題#914「コメントむずい」 #学習院大学2023 #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#学習院大学
指導講師: ますただ
問題文全文(内容文):
$f(0)=0$
$f'(x)+\displaystyle \int_{0}^{1} f(t) dt=2e^{2x}-e^x$
を満たす関数$f(x)$を求めよ。

出典:2023年学習院大学
この動画を見る 
PAGE TOP