【高校受験対策/数学】関数-58 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数-58

問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
投稿日:2022.01.07

<関連動画>

【式の意味を理解して!】二次方程式:東京工業大学附属科学技術高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#東京工業大学附属科学技術高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ 2x^2-(a+b)x+(a-b)=0 $の解が-2と3であるとき,
定数$ a,b $の値をそれぞれ求めなさい.

東京工業大学附属科学技術高等学校過去問
この動画を見る 

綺麗に解けます。 明大明治

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+\sqrt 2x = y^2+ \sqrt 2 y = 5(x \neq y)$を満たすとき
$x^2+y^2 =?$

明治大学付属明治高等学校
この動画を見る 

【高校受験対策/数学】死守-80

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#1次関数#確率#2次関数#文字と式#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守80

①$-3+(-4)×5$を計算しなさい。

②$4xy÷8x×6y$を計算しなさい。

③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。

④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$

③下の図で、$\angle x$の大きさを求めなさい。

④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。

⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。

⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。

⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
この動画を見る 

区別できる?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 3)^2=$
$\sqrt {3^2}=$
$(\sqrt {-3})^2=$
$\sqrt {(-3)^2}=$
この動画を見る 

何をかけたら3乗になる?広陵

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
450をn倍するとある整数の3乗になった。
最も小さい自然数nは?

広陵高等学校
この動画を見る 
PAGE TOP