問題文全文(内容文):
次の2直線のなす鋭角θを求めよ。
(1) $y=-\sqrt{3}x, y=-x$
(2) $y=-\frac{1}{\sqrt{3}}x, y=x$
次の2直線のなす鋭角θを求めよ。
(1) $y=-\sqrt{3}x, y=-x$
(2) $y=-\frac{1}{\sqrt{3}}x, y=x$
チャプター:
0:00 オープニング
0:10 (1)の基本方針の確認
0:31 手順① 2直線とx軸の正の向きとのなす角を求める
2:21 手順② それぞれの角の差を引き算で求める
2:56 手順③ 求めた角が鋭角になっているかの確認
3:23 (2)の問題・基本方針の確認
3:46 手順① 2直線とx軸の正の向きとのなす角を求める
6:26 手順② それぞれの角の差を引き算で求める
7:15 手順③ 求めた角が鋭角になっているかの確認
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2直線のなす鋭角θを求めよ。
(1) $y=-\sqrt{3}x, y=-x$
(2) $y=-\frac{1}{\sqrt{3}}x, y=x$
次の2直線のなす鋭角θを求めよ。
(1) $y=-\sqrt{3}x, y=-x$
(2) $y=-\frac{1}{\sqrt{3}}x, y=x$
投稿日:2025.01.30