問題文全文(内容文):
入試予想問題~近畿大学附属高等学校 2022年
・$\displaystyle \frac{3a-7}{4}-\displaystyle \frac{2a-5}{3}$
・$(\sqrt{ 32 }-\sqrt{ 6 }-2)(\sqrt{ 18 }+\displaystyle \frac{2\sqrt{ 6 }}{3}+\sqrt{ \displaystyle \frac{ 2 }{ 3 }})$
$3x+2y=4$
$6x-7y=3a$
の解の比が$x:y=2:3$
定数aの値を求めよ。
$y=\displaystyle \frac{a}{x}(a \gt o)$と
$y=\displaystyle \frac{1}{4}x^2$点aで交わる。
($X$座標が4)
点Aからx軸に下ろした垂線とx軸の交点Bとし、
$y=\displaystyle \frac{a}{x}$上に点C,$y=\displaystyle \frac{1}{4}x^2$上にD点
(1)aの値?
(2)△ABCの面積が8のとき点Cの座標?
(3) (2) のとき、△ABC=△BCDとなる点D?
但し、A,Dは異なる。
入試予想問題~近畿大学附属高等学校 2022年
・$\displaystyle \frac{3a-7}{4}-\displaystyle \frac{2a-5}{3}$
・$(\sqrt{ 32 }-\sqrt{ 6 }-2)(\sqrt{ 18 }+\displaystyle \frac{2\sqrt{ 6 }}{3}+\sqrt{ \displaystyle \frac{ 2 }{ 3 }})$
$3x+2y=4$
$6x-7y=3a$
の解の比が$x:y=2:3$
定数aの値を求めよ。
$y=\displaystyle \frac{a}{x}(a \gt o)$と
$y=\displaystyle \frac{1}{4}x^2$点aで交わる。
($X$座標が4)
点Aからx軸に下ろした垂線とx軸の交点Bとし、
$y=\displaystyle \frac{a}{x}$上に点C,$y=\displaystyle \frac{1}{4}x^2$上にD点
(1)aの値?
(2)△ABCの面積が8のとき点Cの座標?
(3) (2) のとき、△ABC=△BCDとなる点D?
但し、A,Dは異なる。
単元:
#数学(中学生)#高校入試過去問(数学)#近畿大学付属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試予想問題~近畿大学附属高等学校 2022年
・$\displaystyle \frac{3a-7}{4}-\displaystyle \frac{2a-5}{3}$
・$(\sqrt{ 32 }-\sqrt{ 6 }-2)(\sqrt{ 18 }+\displaystyle \frac{2\sqrt{ 6 }}{3}+\sqrt{ \displaystyle \frac{ 2 }{ 3 }})$
$3x+2y=4$
$6x-7y=3a$
の解の比が$x:y=2:3$
定数aの値を求めよ。
$y=\displaystyle \frac{a}{x}(a \gt o)$と
$y=\displaystyle \frac{1}{4}x^2$点aで交わる。
($X$座標が4)
点Aからx軸に下ろした垂線とx軸の交点Bとし、
$y=\displaystyle \frac{a}{x}$上に点C,$y=\displaystyle \frac{1}{4}x^2$上にD点
(1)aの値?
(2)△ABCの面積が8のとき点Cの座標?
(3) (2) のとき、△ABC=△BCDとなる点D?
但し、A,Dは異なる。
入試予想問題~近畿大学附属高等学校 2022年
・$\displaystyle \frac{3a-7}{4}-\displaystyle \frac{2a-5}{3}$
・$(\sqrt{ 32 }-\sqrt{ 6 }-2)(\sqrt{ 18 }+\displaystyle \frac{2\sqrt{ 6 }}{3}+\sqrt{ \displaystyle \frac{ 2 }{ 3 }})$
$3x+2y=4$
$6x-7y=3a$
の解の比が$x:y=2:3$
定数aの値を求めよ。
$y=\displaystyle \frac{a}{x}(a \gt o)$と
$y=\displaystyle \frac{1}{4}x^2$点aで交わる。
($X$座標が4)
点Aからx軸に下ろした垂線とx軸の交点Bとし、
$y=\displaystyle \frac{a}{x}$上に点C,$y=\displaystyle \frac{1}{4}x^2$上にD点
(1)aの値?
(2)△ABCの面積が8のとき点Cの座標?
(3) (2) のとき、△ABC=△BCDとなる点D?
但し、A,Dは異なる。
投稿日:2022.02.03