福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
投稿日:2022.08.10

<関連動画>

福田の数学〜早稲田大学2021年人間科学部第2問(2)〜3辺の長さから三角形の面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)3辺の長さがそれぞれ5,16,19の三角形の面積は\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }} である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:お茶の水女子大学 過去問訂正版
この動画を見る 

【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$

②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$

③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
この動画を見る 

6乗根をはずせ!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
この動画を見る 

トルコJr数学オリンピック

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$(x,y)$を求めよ.
$2x^2+y^2+7=2(x+1)(y+1)$

トルコJr数学オリンピック
この動画を見る 
PAGE TOP