【数学】0で割れると成り立つ不思議な世界 - 質問解決D.B.(データベース)

【数学】0で割れると成り立つ不思議な世界

問題文全文(内容文):
0で割れると成り立つ不思議な世界についての動画です
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0で割れると成り立つ不思議な世界についての動画です
投稿日:2018.09.29

<関連動画>

【数学】中2-4 いろいろな多項式の計算①

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$

【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
この動画を見る 

正負の数 四則混合

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$9-3 \div \frac{1}{3} + 1$を計算しなさい
この動画を見る 

計算したらどれが1番大きいの? おかやま山陽(岡山)

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
1番大きいのは?
(1)71×79
(2)72×78
(3)73×77
(4)74×76
(5)75×75

おかやま山陽高校
この動画を見る 

【受験対策】 数学-小問②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。
①$-\displaystyle \frac{1}{7}+\displaystyle \frac{2}{5}$

②$2a+\displaystyle \frac{a}{3}$

③$(-4)^2+8 \div (-2)$

④$2a+b-\displaystyle \frac{2a+b}{3}$

⑤$8x^4y^3 \div 4xy^2$

⑥方程式$\displaystyle \frac{4x+5}{3}=x$を解こう。

⑦$2x-5y=7$を$x$について解こう。

⑧$x=\displaystyle \frac{4}{5},y=-2$のとき、$3(4x-y)-(2x-5y)$の値を求めよう。
この動画を見る 

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 
PAGE TOP