大学入試問題#132 横浜国立大学(2007) 定積分 - 質問解決D.B.(データベース)

大学入試問題#132 横浜国立大学(2007) 定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{4}{3}}^{2}\displaystyle \frac{1}{x^2\sqrt{ x-1 }}\ dx$を計算せよ。

出典:2007年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{4}{3}}^{2}\displaystyle \frac{1}{x^2\sqrt{ x-1 }}\ dx$を計算せよ。

出典:2007年横浜国立大学 入試問題
投稿日:2022.03.03

<関連動画>

【数Ⅲ-158】定積分で表された関数①

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。

①$\int_a^x \frac{t}{1+e^{2t}}dt$

➁$\int_0^{x} (x-t)e^{2t}dt$

③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る 

大学入試問題#362「頻出問題ではないでしょうか?」 福島大学 改 2014 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{-a}^{a}\displaystyle \frac{dx}{(e^x+e^{-x})^2}$

出典:2014年福島大学 入試問題
この動画を見る 

大学入試問題#469「なんかワクワクする積分」 千葉大学2011 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x\displaystyle \int_{0}^{x} \displaystyle \frac{dt}{1+t^2}$とおく

$\displaystyle \int_{0}^{1} f(x) dx$を求めよ

出典:2011年千葉大学 入試問題
この動画を見る 

大学入試問題#408 産業医科大学(2018) #定積分

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{-1} \displaystyle \frac{x^2+2x+1}{\sqrt{ -x^2-2x+1 }} dx$

出典:2018年産業医科大学 入試問題
この動画を見る 

【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る 
PAGE TOP