大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分 - 質問解決D.B.(データベース)

大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分

問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
投稿日:2024.02.12

<関連動画>

茨城大 二次関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2-(a-2)x+2$
$g(x)=-x^2+2x+a-2$

(1)
すべての実数$x$に対して$f(x) \gt g(x)$が成り立つ

(2)
すべての実数$x_1,x_2$に対して$f(x_1) \gt g(x_2)$が成り立つ

(1)(2)ともに$a$の値の範囲
この動画を見る 

大学入試問題#845「気持ち応用か!?」 #電気通信大学(2020) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=n+1}^{2n} \displaystyle \frac{n}{k^2+3kn+2n^2}$

出典:2020年電気通信大学
この動画を見る 

福田の数学〜魔方陣の基礎知識があると楽に解けるね〜慶應義塾大学2023年環境情報学部第3問(2)〜魔方陣と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
( 2 )まず、図 2 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の和がいずれも等しくなるように、相異なる 1 ~ 9 の正の整数を 1 つずっ割り当てる。複数の割り当て方が考えられるが、その 1 つを選び割り当てるものとする。この 9 つの数を、図 3 に示すように 3 つのサイコロの展開図に書き写し、図 4のように 3 つのサイコロを作成する。サイコロは振ると、等しい確率で目(書き写した数)が出るものとする。いま、 2 人のプレ ー ヤ ー が 3 つのサイコロから異なるものを 1 つずつ選び、そのサイコロを振り、出た目が大きい方が勝っとする。あなたの対戦相手が9 を含むサイコロを選んだとき、あなたがこのゲ ー ムに、より高確率に勝っために選ぶべきサイコロは、$\fbox{エ}$を含むサイコロである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

誘導がなければ素晴らしい解法も出てくるんじゃね?

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して,「確率pで+1,確率1-pで+2」の移動を繰り返す.
ただし$0\leqq p \leqq 1$とする.このような移動を繰り返して自然数nの点に到達する確率を$p_n$と表す.次の問に答えよ.

(1)$p_1,p_2,p_3$を$p$を用いて表せ.
(2)$p_n,p_{n+1},p_{n+2}$の間の関係式を求めよ.
(3)$a_n=p_{n+1}-p_n(n \geqq 1)$とおくとき,数列${a_n}$が満たす漸化式を求めよ.
(4)pとnを用いて,一般項$p_n$を表せ.
(5)数列${p_n}$の極限を調べよ.
この動画を見る 

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、放物線$y=\frac{1}{2}x^2$を$C_1$、放物線$y=-(x-a)^2+b$を$C_2$とする。
(1)$C_1$と$C_2$が異なる2点で交わるためのa,bの条件を求めよ。
以下、$C_1$と$C_2$は異なる2点で交わるとし、$C_1$と$C_2$で囲まれた図形の面積をSとする。
(2)$S=16$となるためのa,bの条件を求めよ。
(3)a,bは$b \leqq a+3$を満たすとする。このときSの最大値を求めよ。

2022名古屋大学文系過去問
この動画を見る 
PAGE TOP