大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分 - 質問解決D.B.(データベース)

大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分

問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
投稿日:2024.02.12

<関連動画>

電気通信大学2014年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 dx$

出典:2014年電気通信大学
この動画を見る 

福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。
$\int xe^{-3x}dx = -(\frac{\boxed{ア}\ x+\boxed{イ}}{\boxed{ウ}})\ e^{-3x}+C$
$\int x^2e^{-3x}dx = -(\frac{\boxed{エ}\ x^2+\boxed{オ}\ x+\boxed{カ}}{\boxed{キク}})\ e^{-3x}+C$
また、定積分について、
$\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{ケ}}(-1+\boxed{コ}\ e^{\boxed{サシ}}-\boxed{スセ}\ e^{-3})$
が成り立つ。

(2)p,q,rを実数の定数とする。関数$f(x)=(px^2+qx+r)e^{-3x}$が$x=0$で極大、
$x=1$で極小となるための必要十分条件は
$p=\boxed{ソタ}\ r,\ \ \ q=\boxed{チ}\ r,\ \ \ \boxed{ツ}$
である。さらに、$f(x)$の極小値が-1であるとすると、$f(x)$の極大値は$\frac{e^{\boxed{テ}}}{\boxed{ト }}$となる.
このとき、$\int_0^1f(x)dx=\frac{\boxed{ナ}}{\boxed{二}}$である。

$\boxed{ツ}$の解答群
$①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1$
$⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}$

2022杏林大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2025医学部第1問〜さいころの目の積の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$3$回続けて投げるとき、

$k$回目に出る目を$X_k (k-1,2,3)$とする。

このとき、

積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、

和$X_1+X_2,X_2+X_3,X_3+X_1$が、

いずれも$6$の倍数にならない確率は$\boxed{イ}$である。

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

大学入試問題#868「ヒントがあれば、どうってことない」 #埼玉医科大学(2010) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ますただ
問題文全文(内容文):
$a \leq b \leq c$とする。
$\sqrt{ 10+\sqrt{ 24 }+\sqrt{ 40 }+\sqrt{ 60 } }=\sqrt{ a }+\sqrt{ b }+\sqrt{ c }=$であるとき、$a,b,c$の値を求めよ。

出典:2010年埼玉医科大学
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(3)〜条件を満たす最小次数の関数を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)$n$を正の整数とする。次の条件(i),(ii),(iii)を満たす$n$次関数$f(x)$のうち$n$が最小のものは、$f(x)$=$\boxed{\ \ ウ\ \ }$である。
(i) $f(1)$=2
(ii) $\displaystyle\int_{-1}^1(x+1)f(x)dx$=0
(iii) すべての正の整数$m$に対して、$\displaystyle\int_{-1}^1|x|^mf(x)dx$=0
この動画を見る 
PAGE TOP