香川大(医) 漸化式 - 質問解決D.B.(データベース)

香川大(医) 漸化式

問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$とする

(1)
$\alpha^n + \beta^n$は偶数であることを示せ($n$自然数)

(2)
$[ \alpha^n ]$は奇数であることを示せ
$[ \alpha^n ]$は$\alpha^n$をこえない最大の整数

出典:2018年香川大学 医学部 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$とする

(1)
$\alpha^n + \beta^n$は偶数であることを示せ($n$自然数)

(2)
$[ \alpha^n ]$は奇数であることを示せ
$[ \alpha^n ]$は$\alpha^n$をこえない最大の整数

出典:2018年香川大学 医学部 過去問
投稿日:2019.07.04

<関連動画>

愛媛大 解けないタイプの漸化式

アイキャッチ画像
単元: #数列#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023愛媛大学過去問題
$a_{1}=2$
$a_{n+1}=a_{n}^2+2(n=1,2,3,\cdots)$
mが自然数なら$a_{2m}$は6の倍数であることを示せ
この動画を見る 

大学入試問題#862「計算力と根性!」 #京都大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=3 \\
a_n=\displaystyle \frac{S_n}{n}+(n-1)・2^n
\end{array}
\right.
\end{eqnarray}$
を満たすような数列$\{a_n\}$の一般項を求めよ

出典:2023年京都大学 入試問題
この動画を見る 

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第5問〜部分和を使った漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が
$S_n$=$(-1)^n$$a_n$-$\displaystyle\frac{1}{2^n}$ ($n$=1,2,3,...)
で表されるとする。$n$が偶数であるとき、
$a_n$=$\displaystyle\frac{\boxed{タ}}{\boxed{チ}}^n$
である。また、$S_1$+$S_2$+...+$S_{50}$の値は
$\frac{\boxed{ツ}}{\boxed{テ}・\boxed{ト}^{50}}$+$\frac{\boxed{ナ}}{\boxed{ニ}}$
である。ただし、$\boxed{チ}$, $\boxed{テ}$, $\boxed{ト}$, $\boxed{ニ}$はできるだけ小さな自然数とする。
この動画を見る 
PAGE TOP