見える人には見える - 質問解決D.B.(データベース)

見える人には見える

問題文全文(内容文):
BD=6のときAC=?
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BD=6のときAC=?
*図は動画内参照
投稿日:2021.07.19

<関連動画>

【数学】東京海洋大2021年度整数問題(2)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(2)pが5以上の素数であるとき、$p^2-1$は6の倍数であることを示せ
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第6問〜複雑な反復試行の確率と確率の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\ \overrightarrow{ v_k }\ を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\\
\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }\\
によりX_nを定める。ただし、kは1回目からn回目までの\\
コイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=8とする。X_8がOにある確率を求めよ。\\
(2)N=200とする。X_{200}がOにあり、かつ、合計200回のコイン投げで表が\\
ちょうどr回出る確率をp_rとおく。ただし0 \leqq r \leqq 200である。p_rを求めよ。\\
またp_rが最大となるrの値を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

補助線どう引く?

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB+BD=AC
x=?
*図は動画内参照
この動画を見る 

倍数の性質の利用 2021 新宿 B

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の条件を満たす4ケタの自然数A=?
・Aの千の位と一の位を入れ替えた数をB
・Aの十の位と一の位を入れ替えた数をC
・Aの千の位と百の位を入れ替えた数をD
・Aは3の倍数
・Aは1の位が素数
・Bは5の倍数
・Cは10の倍数
・D-A=3600

2021都立新宿高等学校
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第4問整数の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
T 3 、 T 4 、 T 6 を次のようなタイマ ー とする。
T3 : 3 進数を 3 桁表示するタイマ ー
T4 : 4 進数を 3 桁表示するタイマ ー
T 6 : 6 進数を 3 裄表示するタイマ ー
なお、第進数とは進法で表された数のことである。これらのタイマ ー は.すべて次の表示方法に従うものとする。
表示方法
(a) スタ ー トした時点でタイマ ー は 000 と表示されている。
(b)タイマ ー は、スタ ー トした後、表示される数が1秒ごとに1ずつ増えていき、3 析で表示できる最大の数が表示された1秒後に.表示が000に戻る。
(c)タイマ ー は表示が 000 に戻った後も(b )と同様に表示される数が 1秒ごとに1ずつ増えていき、3 裄で表示できる最大の数が表示された1秒後に、表示が 000 に戻るという動作を繰り返す。
例えば、 T3 はスタ ー トしてから 3 進数でに$12_{ (3) }$秒後に012 と表示される。その後 222 と表示された1秒後に表示が000に戻り、その$12_{ (3) }$秒後に再び012と表示される。
( 1 ) T6 は、スタ ー トしてから 10 進数で 40 秒後にアイウと表示される。T4 は、スタ ー トしてから 2 進数で$10011_{ (2) }$秒後にエオカと表示される。
( 2 ) T 4 をスタ ー トさせた後、初めて表示が 000 に戻るのは、スタ ー トしてから10 進数でキク秒後であり、その後もキク秒ごとに表示が 000 に戻る。同様の考察を T 6 に対しても行うことにより、 T 4 と T 6 を同時にスタートさせた後、初めて両方の表示が同時に 000 に戻るのは.スタ ー トしてから 10 進でケコサシ秒後であることがわかる。
( 3 ) 0 以上の整数$\ell$に対して、T 4 をスタ ー トさせた$\ell$秒後に T4 が 012と表示されることと
$\ell$をスセで割った余りがソであることは同値である。ただしスセとソは10進法で表されているものとする。T3 についても同様の考察を行うことにより、次のことがわかる。T3 と T4 を同時にスタ ー トさせてから、初めて両方が同時に 012 と表示されるまでの時間をm秒とするとき、mは 10 進法でタチツと表される。
また、 T4とT6 の表示に関する記述として.次の0~3のうち、正しいものはテである。
0 T4 と T6 を同時にスタ ー トさせてから、m秒後より前に初めて両方が同時に 012 と表示される。
1 T4 と T6 を同時にスタ ー トさせてから、ちょうどm秒後に初めて両方が同時に 0 と表示される。
2 T4 と T6 を同時にスタ ー トさせてから、m秒後より後に初めて両方が同時に 012 と表示される。
3 T4 と T6 を同時にスタ一トさせてから、両方が同時に 012 と表示されることはない。

2024共通テスト過去問
この動画を見る 
PAGE TOP