【数検2級】高校数学:数学検定2級2次:問題4 - 質問解決D.B.(データベース)

【数検2級】高校数学:数学検定2級2次:問題4

問題文全文(内容文):
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、$\overrightarrow{ AB }=\vec{ b }$ ,$\overrightarrow{ AC }=\vec{ c }$として、次の問いに答えなさい。
(1) $\overrightarrow{ AD }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
(2) $\overrightarrow{ AI }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
チャプター:

0:00 問題4について
1:14 (1)の解説
3:05 (2)の解説
5:34 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学検定#数学検定2級#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、$\overrightarrow{ AB }=\vec{ b }$ ,$\overrightarrow{ AC }=\vec{ c }$として、次の問いに答えなさい。
(1) $\overrightarrow{ AD }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
(2) $\overrightarrow{ AI }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
投稿日:2023.02.18

<関連動画>

【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
この動画を見る 

07三重県教員採用試験(数学:9番 球面,点と平面の距離)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
球面$S:x^2+y^2+z^2-4x+8z=k$の平面
$\alpha:x-2y-z=-6$による切り口の面積が
$6\pi$のとき,$k$の値を求めよ.
この動画を見る 

【高校数学】 数B-4 ベクトルの式の計算①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を簡単にしよう。

①$(3\vec{ a }-2\vec{ b })-(\vec{ a }-5\vec{ b })$

②$-5(2\vec{ a }-\vec{ b })+3(\vec{ a }-2\vec{ b })$

◎次の等式を満たす$\vec{ x }$を$\vec{ a },\vec{ b }$を用いて表そう。

③$5\vec{ x }-6\vec{ a }=2\vec{ b }+3\vec{ x }$

④$3(2\vec{ a }-\vec{ b }+\vec{ x })=9\vec{ a }+\vec{ b }$
この動画を見る 

福田の数学〜九州大学2022年理系第1問〜空間における折れ線の最小〜平面の方程式を勉強するよ!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の5点
$O(0,0,0), A(1,1,0), B(2,1,2), P(4,0,-1), Q(4,0,5)$
を考える。3点O,A,Bを通る平面を$\alpha$とし、$\overrightarrow{ a }=\overrightarrow{ OA }, \overrightarrow{ b }=\overrightarrow{ OB }$とおく。
以下の問いに答えよ。
(1)ベクトル$\overrightarrow{ a }, \overrightarrow{ b }$の両方に垂直であり、x成分が正であるような、
大きさが1のベクトル$\overrightarrow{ n }$を求めよ。
(2)平面$\alpha$に関して点Pと対称な点P'の座標を求めよ。
(3)点Rが平面$\alpha$上を動くとき、$|\overrightarrow{ PR }|+|\overrightarrow{ RQ }|$が最小となるような
点Rの座標を求めよ。

2022九州大学理系過去問
この動画を見る 

【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 
PAGE TOP