問題文全文(内容文):
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
単元:
#積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
投稿日:2021.02.21





