【数Ⅰ】【図形と計量】余弦定理応用4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】余弦定理応用4 ※問題文は概要欄

問題文全文(内容文):
$△ABC$において,次のものを求めよ。
(1) $\sin A: \sin B:\sin C=5:8:7$ のとき,$\cos C,C$
(2) $(b+c):(c+a):(a+b)=4:5:6$のとき$A$
(3) $A:B:C=5:4:8$のとき $A, B, C, b:c$
チャプター:

0:00 (1)問題確認中
0:13「お決まりの技」の紹介
0:40 sinの比から辺の比を出す
1:28 正の数kで3辺の長さを表す
1:57 余弦定理でcosCを出す
3:55 Cを求める
4:24 (2)問題確認中
4:47 a,b,cをkを使って表す
7:36今回はkではなくhを使う
8:32 余弦定理でcosAを求める
10:06 Aを求める
10:29 (3)問題確認中
10:45 A,B,Cを求める
13:03 b:cを求める

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,次のものを求めよ。
(1) $\sin A: \sin B:\sin C=5:8:7$ のとき,$\cos C,C$
(2) $(b+c):(c+a):(a+b)=4:5:6$のとき$A$
(3) $A:B:C=5:4:8$のとき $A, B, C, b:c$
投稿日:2025.02.01

<関連動画>

分母の有理化しなくていい。式の値 関西大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b=3 , ab=1 ,a > b
$\frac{\sqrt a - \sqrt b}{\sqrt a + \sqrt b}=?$
関西大学
この動画を見る 

信州大 絶対値のついた2次方程式 相違4実根

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ

出典:2006年信州大学 過去問
この動画を見る 

令和四年都立国立高校一問目 平方根の計算 2022 入試問題100題解説76問目!

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
この動画を見る 

図形と計量空間の基本1 【烈's study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のような$AB=\sqrt6、AD=\sqrt3、AE=1$である直方体$ABCD-EFGH$がある。このとき、次のものを求めよ。
(1)$\angle ACF$の大きさ 
(2)$△ACF$の面積
この動画を見る 

逆ハート❤️はダメ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a+b}{c}=$
$\frac{c}{a+b}=$
この動画を見る 
PAGE TOP