等式を満たす2個のサイコロ 確率 立川高校 確率 - 質問解決D.B.(データベース)

等式を満たす2個のサイコロ 確率 立川高校 確率

問題文全文(内容文):
大小2コのサイコロを同時に投げる。
大きいサイコロの目=x
小さいサイコロの目=y
$x^2-6x=y^2-6y$となる確率は?

立川高等学校
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
大小2コのサイコロを同時に投げる。
大きいサイコロの目=x
小さいサイコロの目=y
$x^2-6x=y^2-6y$となる確率は?

立川高等学校
投稿日:2021.01.05

<関連動画>

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守8

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#文章題#文章題その他#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$4 \times (5+2)$を計算しなさい.

②$\dfrac{2}{3}-\dfrac{1}{5}$を計算しなさい.

③$24\div (-6)$を計算しなさい.

④$3(2x-y)-(x+5y)$を計算しなさい.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=8 \\
2x-y=-5
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑥$x^2+x-56$を因数分解しなさい.

⑦$(\sqrt{27}-\sqrt3)\times \sqrt2$を計算しなさい.

⑧方程式$x^2-5x+1=0$を解きなさい.

⑨下の図のように,$\triangle ABC$の辺$BC$を延長して$CD$とし,
辺$CA$を延長して$AE$とします.
$\angle ABC=41°,\angle ACD=124°$のとき,
$\angle BAE$の大きさは何度ですか.

⑩1箱60円のチョコレートと1個40円のあめが売られています.
このチョコレートとあめを買うとき,代金をちょうど500円にするには,
買い方は全部で何通りありますか.

図は動画内を参照
この動画を見る 

パズル的な問題!! B

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
平行四辺形ABCDにおいて
△AFEの面積=?
*図は動画内参照

暁高等学校
この動画を見る 

【高校受験対策/数学】関数49

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数49

Q
右の図で点oは原点であり、四角形OABCは、4点o、 A$(5,0)$、B$(5,2)$、C$(0,7)$を頂点とする台形である。
また、直線$l$は関数$y=-\frac{1}{4}x+a$のグラフで ある。各問いに答えよ。

①点Aを通り直線$l$に平行な直線の式を求めよ。

②直線$l$と直線BCとの交点をDとする。
$a=4$のとき、 線分CDの長さは線分DBの長さの何倍か。

③直線$l$が台形OABCの面積を2等分するとき、$a$の値を求めよ。
この動画を見る 

文字3つ 式3つの連立方程式 開成高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z = \frac{1}{6} \\
2x + y - z = - \frac{1}{2} \\
x + 3y +2z = \frac{1}{6}
\end{array}
\right.
\end{eqnarray}

開成高等学校
この動画を見る 
PAGE TOP