【数Ⅰ】【図形と計量】正弦定理と余弦定理の応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】正弦定理と余弦定理の応用3 ※問題文は概要欄

問題文全文(内容文):
図を利用して、sin105°とcos105°の値を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:11 アプローチについて
1:06 解説(cos105°)
3:36 解説(sin105°)
5:15 15°、75°などの値
5:25 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図を利用して、sin105°とcos105°の値を求めよ。
投稿日:2025.02.08

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(6)〜平均と分散の関係

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)10個の正三角形がある。それらの辺の長さからなるデータの平均は9である。
また、それらの面積からなるデータの平均値は$\frac{118\sqrt3}{5}$である。このとき、
辺の長さからなるデータの分散は$\ \boxed{ク}$である。

2021立教大学経済学部過去問
この動画を見る 

福田のおもしろ数学096〜連立方程式が実数解をもつ条件

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$,$b$が実数のとき、次の連立方程式が実数解をもつための$a$,$b$の条件を求めよ。
$\left\{\begin{array}{1}
x+y+z=a ...①
x^2+y^2+z^2=b ...②
\end{array}\right.$
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(2)〜虚数が係数の2次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

【数Ⅰ】図形と計量:三角比への応用:「角の二等分線」の長さの求め方!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$AB=2,AC=3,A=60°$とし,$∠A$の二等分線と辺$BC$の交点を$D$とする。線分$AD$の長さを求めよ。
この動画を見る 

福田のわかった数学〜高校1年生056〜図形の計量(7)等面四面体の体積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(7)
4つの面のどれも3辺の長さが
5,6,7の三角形である四面体
(等面四面体)の体積を求めよ。
この動画を見る 
PAGE TOP