問題文全文(内容文):
図の△ABCは、∠B=90°の直角三角形であり、3点D、E、Fは△ABCの外心、内心、重心のいずれかである。このとき、△ABCの外心、内心、重心はそれぞれ3点D、E、Fのいずれかであるか答えなさい。
図の△ABCは、∠B=90°の直角三角形であり、3点D、E、Fは△ABCの外心、内心、重心のいずれかである。このとき、△ABCの外心、内心、重心はそれぞれ3点D、E、Fのいずれかであるか答えなさい。
チャプター:
0:00 オープニング
0:05 問題文
0:24 解説
1:30 エンディング
単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図の△ABCは、∠B=90°の直角三角形であり、3点D、E、Fは△ABCの外心、内心、重心のいずれかである。このとき、△ABCの外心、内心、重心はそれぞれ3点D、E、Fのいずれかであるか答えなさい。
図の△ABCは、∠B=90°の直角三角形であり、3点D、E、Fは△ABCの外心、内心、重心のいずれかである。このとき、△ABCの外心、内心、重心はそれぞれ3点D、E、Fのいずれかであるか答えなさい。
投稿日:2023.11.22