【中学数学】イコールが2つある方程式の解き方~連立方程式の応用~ 2-5.5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】イコールが2つある方程式の解き方~連立方程式の応用~ 2-5.5【中2数学】

問題文全文(内容文):
以下の方程式を解け。
$3x-4y+5=2x+y-4=5x-3y+1$
チャプター:

00:00 はじまり

00:13 問題

03:26 まとめ

03:48 問題と答え

単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
以下の方程式を解け。
$3x-4y+5=2x+y-4=5x-3y+1$
投稿日:2021.06.23

<関連動画>

【コツをつかめば簡単に解ける!】2元2次連立方程式③:中学からの連立方程式~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+2y=6 \\
2xy+x-y=5
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

ただの連立二元三次方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)(x^2+y^2)=65 \\
(x-y)(x^2-y^2)=5
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

連立方程式:東京工業大学附属科学技術高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京工業大学附属科学技術高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京工業大学附属科学技術高等学校

$x$と$y$の値をそれぞれ求めなさい。
$x:y=3:2$が成り立ち
$x + y = 4$である。
この動画を見る 

ただの中学2年生レベルの連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2021x+2022y=3 \\
2019x+2020y=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP