中学生でも解ける京大の入試問題!解けますか?【数学 入試問題】【京都大学】 - 質問解決D.B.(データベース)

中学生でも解ける京大の入試問題!解けますか?【数学 入試問題】【京都大学】

問題文全文(内容文):
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。

京都大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。

京都大過去問
投稿日:2022.06.06

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円で
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もし$C \lt 90$
であれば、飲食店は要請に応じず、超過利益は0万円とする。
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円
$(D \geqq C)$であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の
節約分は0万円とする。
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体
の補償金の節約分が最も大きくなるのは$C=\boxed{\ \ アイウ\ \ }$万円の場合である。
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの
とする。また、ここでは自治体が支払うことができる補償金の上限については、
125万円か150万円か175万円のどれかに定まっているが公表されておらず、
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である
確率が\frac{2}{5}であると予想しているものとする。
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店
の超過利益(の期待値)は$\boxed{\ \ エオカ\ \ }$万円となる。
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請
の際に自治体に提示したとすると
$(\textrm{a})$飲食店の超過利益(の期待値)は$\boxed{\ \ キクケ\ \ }$万円であり、
$(\textrm{b})$自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は
$\boxed{\ \ コサシ\ \ }$万円。
$(\textrm{c})$自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は
$\boxed{\ \ スセソ\ \ }$万円。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校1年生072〜場合の数(11)組み分け

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(11) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第3問〜複雑な反復試行と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
最初に袋の中に白玉が1個入っている。次の規則に従って、1回の操作につき
白玉または赤玉を1個ずつ加えていく。
・1回目の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個加
え、裏が出たときには白玉を袋の中に1個加える。
・2回目以降の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個
加え、裏が出たときには袋から玉を1個無作為に取り出し、その色を見てから
袋に戻し、さらに同じ色の玉を袋の中に1個加える。
(1) 2回目の操作を終えたとき、袋の中に白玉がちょうど2個入っている確率は
$\boxed{\ \ サ\ \ }$である。
(2) 3回目の操作を終えたとき、コインの表が2回、裏が1回出ていたという条件
の下で、袋の中に白玉がちょうど2個入っている条件つき確率は$\boxed{\ \ シ\ \ }$である。
以下、kは2以上の整数とし、k回目の操作を終えたときを考える。
(3)袋の中に白玉のみが入っている確率は$\boxed{\ \ ス\ \ }$である。
(4)1回目の操作で赤玉を加えたという条件の下で、袋の中に白玉がちょうどk個
入っている条件つき確率は$\boxed{\ \ セ\ \ }$である。
(5)袋の中に白玉がちょうどk個入っている確率は$\boxed{\ \ ソ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【短時間でマスター!!】順列を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
順列
男2人、女3人の5人が1列並ぶ。
①両端が女
②男2人が隣り合う
③男が隣りあわない
この動画を見る 
PAGE TOP