この問題解けますか。 - 質問解決D.B.(データベース)

この問題解けますか。

問題文全文(内容文):
$f(x)=\int_0^2{3x^2-xf(t)}dt$を満たす$f(x)$を求めよ
単元: #積分とその応用#定積分#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$f(x)=\int_0^2{3x^2-xf(t)}dt$を満たす$f(x)$を求めよ
投稿日:2019.12.03

<関連動画>

【高校数学】毎日積分34日目【区分求積法】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、忘れがちな区分求積法について解説!
この動画を見る 

【高校数学】毎日積分10日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_e^{e^e}\frac{log(logx)}{xlogx}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分22日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}sin^2θcos2θdθ$
これを解け.
この動画を見る 

福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。\\
\int xe^{-3x}dx = -(\frac{\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }})\ e^{-3x}+C\\
\int x^2e^{-3x}dx = -(\frac{\boxed{\ \ エ\ \ }\ x^2+\boxed{\ \ オ\ \ }\ x+\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }})\ e^{-3x}+C\\
また、定積分について、\\
\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{\ \ ケ\ \ }}(-1+\boxed{\ \ コ\ \ }\ e^{\boxed{\ \ サシ\ \ }}-\boxed{\ \ スセ\ \ }\ e^{-3})\\
が成り立つ。\\
\\
(2)p,q,rを実数の定数とする。関数f(x)=(px^2+qx+r)e^{-3x}がx=0で極大、\\
x=1で極小となるための必要十分条件は\\
p=\boxed{\ \ ソタ\ \ }\ r,\ \ \ q=\boxed{\ \ チ\ \ }\ r,\ \ \ \boxed{\ \ ツ\ \ }\\
である。さらに、f(x)の極小値が-1であるとすると、f(x)の極大値は\frac{e^{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}となる。\\
このとき、\int_0^1f(x)dx=\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}である。\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1\ \ \ \ \\
⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}\ \ \ \
\end{eqnarray}

2022杏林大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 
PAGE TOP