福田の数学〜大阪大学2024年理系第1問〜方程式の解と極限 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年理系第1問〜方程式の解と極限

問題文全文(内容文):
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
投稿日:2024.05.31

<関連動画>

大学入試問題#492「置換方法はいろいろ」 信州大学後期(2018) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{2}^{n} \displaystyle \frac{dx}{\sqrt{ x^5+x^2 }}$

出典:2018年信州大学後期 入試問題
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(1)〜指数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$2^{1-3x} \geqq \left(\dfrac{1}{\sqrt2}\right)^x$を満たす

実数$x$の値の範囲は$\boxed{ア}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

大学入試問題#457「いかにしてサッパリ解くか!」 横浜国立大学(2001) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{dx}{x\sqrt{ 1+x^3 }}$

出典:2001年横浜国立大学 入試問題
この動画を見る 

大学入試問題#39 東海大学医学部(2021) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$n:$自然数
$n^3+100$が$n+10$で割り切れるような最大の$n$の値を求めよ。

出典:2021年東海大学医学部 入試問題
この動画を見る 
PAGE TOP