問題文全文(内容文):
$3$つの複素数 $z_1, z_2, z_3$に関する条件$P$を次のように定める。
P: 「$z_1, z_2, z_3$はどれも0ではなく、互いに異なり、かつ$ \{{z_1}^n | n は整数\} = \{{z_2}^n | nは整数\} = \{{z_3}^n |n は整数\}$
である。」
次の問いに答えよ。
(1) $3$つの複素数 $z_1,z_2,z_3$が条件$P$を満たしているとする。このとき$ |z_1| = 1$ であることを示せ。また集合$ \{{z_1}^n | n は整数\}$の要素の個数は有限であることを示せ。
(2) 条件$P$を満たす3つの複素数 $z_1,z_2,z_3$のうち、集合$ \{{z_1}^n | n は整数\}$の要素の個数が最小となるものを考える。このとき集合$ \{{z_1}^n | n は整数\}$を求めよ。
$3$つの複素数 $z_1, z_2, z_3$に関する条件$P$を次のように定める。
P: 「$z_1, z_2, z_3$はどれも0ではなく、互いに異なり、かつ$ \{{z_1}^n | n は整数\} = \{{z_2}^n | nは整数\} = \{{z_3}^n |n は整数\}$
である。」
次の問いに答えよ。
(1) $3$つの複素数 $z_1,z_2,z_3$が条件$P$を満たしているとする。このとき$ |z_1| = 1$ であることを示せ。また集合$ \{{z_1}^n | n は整数\}$の要素の個数は有限であることを示せ。
(2) 条件$P$を満たす3つの複素数 $z_1,z_2,z_3$のうち、集合$ \{{z_1}^n | n は整数\}$の要素の個数が最小となるものを考える。このとき集合$ \{{z_1}^n | n は整数\}$を求めよ。
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$3$つの複素数 $z_1, z_2, z_3$に関する条件$P$を次のように定める。
P: 「$z_1, z_2, z_3$はどれも0ではなく、互いに異なり、かつ$ \{{z_1}^n | n は整数\} = \{{z_2}^n | nは整数\} = \{{z_3}^n |n は整数\}$
である。」
次の問いに答えよ。
(1) $3$つの複素数 $z_1,z_2,z_3$が条件$P$を満たしているとする。このとき$ |z_1| = 1$ であることを示せ。また集合$ \{{z_1}^n | n は整数\}$の要素の個数は有限であることを示せ。
(2) 条件$P$を満たす3つの複素数 $z_1,z_2,z_3$のうち、集合$ \{{z_1}^n | n は整数\}$の要素の個数が最小となるものを考える。このとき集合$ \{{z_1}^n | n は整数\}$を求めよ。
$3$つの複素数 $z_1, z_2, z_3$に関する条件$P$を次のように定める。
P: 「$z_1, z_2, z_3$はどれも0ではなく、互いに異なり、かつ$ \{{z_1}^n | n は整数\} = \{{z_2}^n | nは整数\} = \{{z_3}^n |n は整数\}$
である。」
次の問いに答えよ。
(1) $3$つの複素数 $z_1,z_2,z_3$が条件$P$を満たしているとする。このとき$ |z_1| = 1$ であることを示せ。また集合$ \{{z_1}^n | n は整数\}$の要素の個数は有限であることを示せ。
(2) 条件$P$を満たす3つの複素数 $z_1,z_2,z_3$のうち、集合$ \{{z_1}^n | n は整数\}$の要素の個数が最小となるものを考える。このとき集合$ \{{z_1}^n | n は整数\}$を求めよ。
投稿日:2024.10.29





