中2数学「平行線と面積①(等積変形)」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「平行線と面積①(等積変形)」【毎日配信】

問題文全文(内容文):
例1
次の図の四角形$ABCD$は,$AB /\!/ DC$の台形で,
点$O$は対角線の交点です.
次の三角形と面積の等しい三角形を答えなさい.

(1)$\triangle ABC$
(2)$\triangle ABD$
(3)$\triangle ABO$

例2
次の図の$\Box ABCD$で,点$P,Q$はそれぞれ辺$AD,CD$上の点で,
$PQ /\!/ AC$です.
この図の中で,$\triangle ABP$と面積の等しい三角形をすべて答えなさい.
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の図の四角形$ABCD$は,$AB /\!/ DC$の台形で,
点$O$は対角線の交点です.
次の三角形と面積の等しい三角形を答えなさい.

(1)$\triangle ABC$
(2)$\triangle ABD$
(3)$\triangle ABO$

例2
次の図の$\Box ABCD$で,点$P,Q$はそれぞれ辺$AD,CD$上の点で,
$PQ /\!/ AC$です.
この図の中で,$\triangle ABP$と面積の等しい三角形をすべて答えなさい.
投稿日:2023.04.21

<関連動画>

キレイな答え

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2015 \times 98 - 2014 \times 99 +2016$

関西大学第一高等学校
この動画を見る 

長方形の分割 愛知県(改) 令和4年度 2022 入試問題100題解説88問目!

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ABCD=80㎠
△DEC=?
*図は動画内参照

2022愛知県(改)
この動画を見る 

【中学数学】連立方程式の計算問題~標準レベル~【中2夏期講習②】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\, \begin{cases}
3\times(x+y-1)-4y=5 \\
5x-3(2x-y-3)=17
\end{cases}
$
$\displaystyle (2)\, \begin{cases}
0.06x+0.04y=16 \\
x+y=300
\end{cases}
$
$\displaystyle (3)\, \begin{cases}
0.2x-0.3y=0.7\\
\frac{1}{4}x+\frac{1}{3}y=\frac{1}{6}
\end{cases}
$
$\displaystyle (4)\,
5x-4y-15=3x+2y-11=-2
$
$\displaystyle (5)\,\begin{cases}
-6ax + 5by = 9\\
4bx + 3ay = 26
\end{cases}の解がx=2, \,y=3のとき、a,bを求めよ。
$
この動画を見る 

ロニー先生の問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
2つの正方形の面積の和=?
*図は動画内参照
この動画を見る 

【高校受験対策】数学-死守19

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例#確率#文章題#文章題その他#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$8-(-13)$を計算しなさい.

②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.

③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.

④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.

⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.

⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.

⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.

⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.

$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)

⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.

ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$

⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい

①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
この動画を見る 
PAGE TOP