中2数学「平行線と面積①(等積変形)」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「平行線と面積①(等積変形)」【毎日配信】

問題文全文(内容文):
例1
次の図の四角形$ABCD$は,$AB /\!/ DC$の台形で,
点$O$は対角線の交点です.
次の三角形と面積の等しい三角形を答えなさい.

(1)$\triangle ABC$
(2)$\triangle ABD$
(3)$\triangle ABO$

例2
次の図の$\Box ABCD$で,点$P,Q$はそれぞれ辺$AD,CD$上の点で,
$PQ /\!/ AC$です.
この図の中で,$\triangle ABP$と面積の等しい三角形をすべて答えなさい.
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の図の四角形$ABCD$は,$AB /\!/ DC$の台形で,
点$O$は対角線の交点です.
次の三角形と面積の等しい三角形を答えなさい.

(1)$\triangle ABC$
(2)$\triangle ABD$
(3)$\triangle ABO$

例2
次の図の$\Box ABCD$で,点$P,Q$はそれぞれ辺$AD,CD$上の点で,
$PQ /\!/ AC$です.
この図の中で,$\triangle ABP$と面積の等しい三角形をすべて答えなさい.
投稿日:2023.04.21

<関連動画>

【数学】中2-22 連立方程式の利用③ みはじの応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①みかさんは家から$12km$離れた駅まで行った。
はじめは自転車に乗って時速$18km$で走っていたんだけど、
途中で友達と会ったので時速$4km$で一緒に歩いていったら、全部で$1$時間$15$分かかった。
自転車で走った道のりと歩いた道のりはそれぞれ$何km?$

②周りの道のりが$1.5km$の池のまわりを$A、B$の$2$人が走る。
同時に同じ 場所をスタートして、反対方向に走ると $5$分後に出会い、同じ方向に走ると$30$分後に$A$が$B$に追いつく。
$A、B$それぞれの分速は?
この動画を見る 

【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.

明治大学付属中野高等学校過去問
この動画を見る 

2021 桐朋 角度 B

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle PQR=?$
*図は動画内参照
2021桐朋高等学校
この動画を見る 

2022年2月2日 名城大学附属2022入試問題解説30問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2022 - 2) \div 2022 \times \frac{3 \times (333 + 4)}{5 \times (200+2)}=?$

2022名城大学附属高等学校
この動画を見る 

【高校受験対策】数学-関数39

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
和夫さんは、本を返却するために家から1800m離れた図書館へ行った。和夫さんは午後4時に家を出発し、毎分180mの速さで5分間走った後、毎分90mの速さで10分間歩いて、図書館に到着した。
その後、本を返却してしばらくたってから図書館を出発し、家へ毎分100mの速さで歩いて帰ったところ、午後4時45分に到着した。

次の図は、午後4時$x$分における家からの道のりを$y$mとして、$x$と$y$の関係をグラフに表したものである。
次の間1~間4に答えなさい。

問1
和夫さんは午後4時3分に郵便局の前を通った。家から郵便局の前までの道のりを求めなさい。

問2
和夫さんが図書館へ行く途中で、歩き始めてから図書館に着くまでの$x$と$y$の関係を式で表しなさ い。ただし、$x$の変域を求める必要はありません。

間3
和夫さんが図書館にいた時間は何分間か、求めなさい。

問4
妹の美紀さんは、午後4時18分に家を出発し、和夫さんと同じ道を通り、図書館へ一定の速さで向かったところ、午後4時33分に和夫さんと出会った。美紀さんが図書館へ向かったときの速さは毎分何mか求めなさい。
この動画を見る 
PAGE TOP