【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の2指数・対数~【数学ⅡB】 - 質問解決D.B.(データベース)

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の2指数・対数~【数学ⅡB】

問題文全文(内容文):
2018年度センター試験・数学ⅡB・過去問解説動画です
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2018年度センター試験・数学ⅡB・過去問解説動画です
投稿日:2018.12.12

<関連動画>

【短時間でポイントチェック!!】指数の計算の基礎(数1・化学でも使える)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$a^2 \times a^9 \div a^5$
②$a^{-\frac{1}{2}} \times a^{\frac{2}{3}}$
③$\{(\frac{25}{16})^{-\frac{5}{4}}\}^\frac{2}{5}$
④$3^4 \times 3^{-5} \div 3^{-6}$
⑤$8^5 \times 32^{-4} \div 2^{-7}$
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{9^5 -6^6}{3^7 - 12^3}$
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の点A(a,b)を1つ固定し、曲線$y=x^2$上の点P$(x,x^2)$と点A
との距離の2乗をg(x)とおく。関数$y=g(x)$のグラフが区間$(-\infty,\infty)$において下に凸
となるための条件は$b \leqq \boxed{\ \ ア\ \ }$となることである。$b \gt \boxed{\ \ ア\ \ }$のとき$y=g(x)$のグラフは
2つの変曲点をもち、そのx座標は$\boxed{\ \ イ\ \ }$及び$\boxed{\ \ ウ\ \ }$である。
ただし$\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }$とする。また、関数$y=g(x)$が極小となるxがただ1つであるために
a,bが満たすべき条件を$b \leqq F(a)$と書くと、$F(a)=\boxed{\ \ エ\ \ }$ である。
$b= F(a)$のとき、関数$y=g(x)$は$x=\boxed{\ \ オ\ \ }$において最小値をとる。
さらに、連立不等式$x \geqq 0,\ y \geqq x^2$が表す領域をDとするとき、
曲線$y=F(x)$のDに含まれる部分の長さLを求めると、$L=\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
この動画を見る 

福田のおもしろ数学354〜指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^x+3^x-4^x+6^x-9^x=1$ を満たす実数 $x$ をすべて求めて下さい。
この動画を見る 

どっちがでかい?(5^10+12^10)vs13^10

アイキャッチ画像
単元: #指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$5^{10}+12^{10}$ VS $13^{10}$
この動画を見る 
PAGE TOP