【数学】中高一貫校用問題集数式・関数編:分数式を含む方程式の解法 - 質問解決D.B.(データベース)

【数学】中高一貫校用問題集数式・関数編:分数式を含む方程式の解法

問題文全文(内容文):
次の方程式を解け。
(1)$\displaystyle \frac{x}{x^2-7x+10} -\frac{10}{x^2-5x} =\frac{2}{x}$
(2)$\displaystyle \frac{x}{x^2+3x+2} =\frac{2}{x+2} -1$
チャプター:

0:00 オープニング
0:11 (1)
2:23 (2)

単元: #数Ⅱ#複素数と方程式#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を解け。
(1)$\displaystyle \frac{x}{x^2-7x+10} -\frac{10}{x^2-5x} =\frac{2}{x}$
(2)$\displaystyle \frac{x}{x^2+3x+2} =\frac{2}{x+2} -1$
投稿日:2024.07.30

<関連動画>

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$t$を実数とし、xの3次式f(x) を
$f(x) = x^3 + (1-2t)x^2+(4-2t)x+4$
により定める。以下の問いに答えよ。
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、$f(x) = 0$ が虚数の
解をもつようなtの範囲を求めよ。

実数tが (1) で求めた範囲にあるとき、方程式 $f(x) = 0$ の異なる2つの虚数解を
α, βとし、実数解をγとする。ただし、$α$の虚部は正、$β$の虚部は負とする。
以下、$α, β, γ$を複素数平面上の点とみなす。
(2) $α, β, γ$をtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点$α$
が描く図形を複素数平面上に図示せよ。

(3) 3点$α, β, γ$が一直線上にあるようなtの値を求めよ。

(4)3点$α, β, γ$が正三角形の頂点となるようなtの値を求めよ。

2022中央大学理工学部過去問
この動画を見る 

福田のおもしろ数学551〜指数方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$10^{2^{x-10}}=2^{10^{x-2}}$

を満たす実数$x$を求めて下さい。
    
この動画を見る 

12京都府教員採用試験(数学:1番 解の個数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$a\in IR$とする.
$\log_{2} (x+1)-\log+(2x-a+3)-1=0$が
異なる2つの解をもつ
$a$の値の範囲を求めよ.
この動画を見る 

【2次方程式の知識はこれで完ペキ!】複素数と2次方程式の関係を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係
指導講師: 3rd School
問題文全文(内容文):
2次方程式と複素数について解説します。
この動画を見る 

【高校数学】 数Ⅱ-40 解と係数の関係⑦

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$x^2-(m-1)x+m+6=0$がともに2以上である2つの解をもつとき、 定数mの値の範囲を求めよう。

②2次方程式$x^2-2mx+m+2=0$の解の1つがより大きく、他の解がより小さい とき、定数mの値の範囲を求めよう。
この動画を見る 
PAGE TOP