#自治医科大学2015 #極限 - 質問解決D.B.(データベース)

#自治医科大学2015 #極限

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ (n+2)(n+3) }-\sqrt{ (n-2)(n-3) }\}$

出典:2015年自治医科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ (n+2)(n+3) }-\sqrt{ (n-2)(n-3) }\}$

出典:2015年自治医科大学
投稿日:2024.07.12

<関連動画>

福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。

2023北里大学医過去問
この動画を見る 

大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。

出典:2020年名古屋工業大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(1)〜面積計算と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(1)$n$を2以上の整数とする。整数$k$$\in$$\left\{1,2,...,n\right\}$に対し、$y$軸に平行な直線$x$=$2^{k-1}$と曲線$y$=$\log_2 x$の交点を$P_k$とする。このとき、線分$P_1P_2$, $P_2P_3$, ..., $P_{n-1}P_n$と直線$x$=$2^{n-1}$および$x$軸で囲まれる図形の面積を$S(n)$とする。不等式
$\displaystyle\frac{S(n)}{2^n}$≧2023
を満たす最小の$n$は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

大学入試問題#740「解き方色々」 東京医科大学(2024) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{1} (x+2)(x-1)^7 dx$

出典:2024年東京医科大学 入試問題
この動画を見る 

算数できない投資情報誌の記者の記事が医大の入試問題に 小学生もチャレンジしてね!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の文章は,「貯蓄額や所得の多い少ないは「学歴」と関係あるのか?」という記事^1からの抜粋である。表は厚生労働省の令和元年国民生活基礎調査から,学歴ごとの平均所得金額(15歳以上の雇用者1人あたり)をまとめたものです。(中略)
男性・女性ともに専門学校・短大・高専卒の方が所得金額が多いのに,総数となると高校・旧制中卒の方が多いのは統計上の謎です。
男性の所得金額も女性の所得金額もともに,専門学校・短大・高専卒業の方が,高校・旧制中卒業より多いのに,総数(男性+女性)では,逆転した結果になっている。これはどうしてか?説明しなさい。

医大入試問題過去問
この動画を見る 
PAGE TOP