#自治医科大学2015 #極限 - 質問解決D.B.(データベース)

#自治医科大学2015 #極限

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ (n+2)(n+3) }-\sqrt{ (n-2)(n-3) }\}$

出典:2015年自治医科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ (n+2)(n+3) }-\sqrt{ (n-2)(n-3) }\}$

出典:2015年自治医科大学
投稿日:2024.07.12

<関連動画>

兵庫医科大学(2021) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0} \displaystyle \frac{x^5}{(x^3-1)^2} dx$

出典:2021年兵庫医科大学 入試問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜東北大学2025理系第6問〜2つの正五角形の重なった図形の周の長さの最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$1$辺の長さが$1$の正五角形を$K$とする。

このとき、以下の問いに答えよ。

(1)$K$の対角線の長さを求めよ。

(2)$K$の周で囲まれた図形を$P$とする。

また、$P$を$K$の外接円の中心の周りに

角$\theta$だけ回転して得られる図形を$P_{\theta}$とする。

$P$と$P_{\theta}$の共通部分の周の長さを

$\ell_{\theta}$とする。

$\theta$が$0°\lt 72°$の範囲を動くとき、

$\ell_{\theta}$の最小値が$2\sqrt5$であることを示せ。

$2025$年東北大学理系過去問題
この動画を見る 

大学入試問題#749「まあミスれん」 東京理科大学(2000) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int e^{\sqrt[ 3 ]{ x }} dx$

出典:2000年東京理科大学工学部 入試問題
この動画を見る 
PAGE TOP