福田のわかった数学〜高校3年生理系075〜平均値の定理(3)近似値計算の問題 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系075〜平均値の定理(3)近似値計算の問題

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(3)\\
\log4=1.3863を用いて\log4.03の値を小数第4位まで求めよ。
\end{eqnarray}
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(3)\\
\log4=1.3863を用いて\log4.03の値を小数第4位まで求めよ。
\end{eqnarray}
投稿日:2021.09.17

<関連動画>

【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x),g(x)を f(x)=x⁴-x²+6(|x|≦1),12/|x|+1(|x|>1) g(x)=1/2cos2πx+7/2(|x|≦2) で定義する。このとき次の問いに答えよ。 
f(x),g(x)の増減を調べ、2曲線C₁:y=f(x),C₂:y=g(x)のグラフの概形を同じ座標平面上にかけ。
この動画を見る 

【数Ⅲ】微分法:対数微分、この計算式をどうしますか?

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x)=(1+a^x)^{1/x}は,0<a<1の時単調である
[上級問題精講数学Ⅲ、416(1)]
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} tを0 \leqq t \leqq \frac{\pi}{2}を満たす定数とする。関数\\
f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)\\
について、以下の問いに答えよ。\\
(1)t=\frac{\pi}{6}のときy=f(x) (0 \leqq x \leqq \pi)のグラフを描け。\\
\\
(2)y=f(x) (0 \leqq x \leqq \pi)のグラフとx軸、y軸および直線x=\pi\\
で囲まれた図形の面積をSとする。Sをtを用いて表せ。\\
\\
(3)tが\leqq t \leqq \frac{\pi}{2}の範囲を動くときのSの最大値と最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜千葉大学2022年理系第9問〜関数が常に増加する条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ rを正の実数とし、関数\hspace{110pt}\\
\\
f(x)=x+\frac{r}{\sqrt{1+\sin^2x}}\\
\\
を考える。\\
(1)r=1のとき、f(x)は常に増加することを示せ。\\
(2)次の条件を満たす最大の正の実数cを求めよ。\\
\\
条件:0 \lt r \lt cのときはf(x)が常に増加する。
\end{eqnarray}
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 関数 x²/2 + y²/8 =1 上の点P(1,2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 x²/2+y²/8=1 上の点P(1,2)における接線の方程式を求めよう。
この動画を見る 
PAGE TOP