【正解を導くことが第一…!】連立方程式:東京都立新宿高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【正解を導くことが第一…!】連立方程式:東京都立新宿高等学校~全国入試問題解法

問題文全文(内容文):
連立方程式
\begin{align}
\left\{
\begin{array}{l}
0.25x + y = 0.75 \\
\displaystyle\frac{x - 2y}{5} = \frac{21}{25}
\end{array}
\right.
\end{align}
単元: #数学(中学生)#中2数学
指導講師:
問題文全文(内容文):
連立方程式
\begin{align}
\left\{
\begin{array}{l}
0.25x + y = 0.75 \\
\displaystyle\frac{x - 2y}{5} = \frac{21}{25}
\end{array}
\right.
\end{align}
投稿日:2024.12.31

<関連動画>

中2数学「式による説明③(2けたの自然数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明③~ (2けたの自然数)

例題
2けたの自然数と、その数の十の位の数と一の位の数を入れかえでできる数 との和が11の倍数になる ことを 説明しなさ い。
この動画を見る 

【食わず嫌いはもったいない!】確率:長野県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#長野県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 長野県の高校

$3$枚の硬貨($100$円、$50$円、$10$円)同時に投げ、

【樹形図】
表を○、 裏を×
とした全て

表が出た硬貨の合計金額が、 $110$円以上になる確率を求めなさい。
どの硬貨も表と裏の出方は同様に確からしいものとする。
※図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-92

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92

①$12÷(-4)$を計算しなさい。

②$\sqrt{3}×\sqrt{8}$を計算しなさい。

③$(x-4)(x-5)$を展開しなさい。

④二次方程式$x^2-5x+3=0$を解きなさい。

⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。

⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。

⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。

⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る 

連立方程式なんだけど解を直接求めようとすると自滅する問題~全国入試問題解法 #Shorts #数学 #高校入試

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
の比$ x:y$を最も簡単な整数の比で答えなさい.
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
37x-53y=2 \\
17x-19y=1
\end{array}
\right.
\end{eqnarray}$

法政第二高校過去問
この動画を見る 

【大切な応用…!】二次関数:広島大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#平行と合同#高校入試過去問(数学)#広島大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
関数$ y=\dfrac{1}{4}x^2 $上に点$ A $は$ x=-2 $である,点$ B $は$ x=6 $である.
直線$ \ell $は2点$ A,B$を通る直線である.
点$ C $は関数$ y=\dfrac{1}{4}x^2 $上の点で
$ \triangle ABC=\triangle ABO $となるもの.
$ x $座標が最も大きくなるときの点$ C $の座標を求めなさい.

広大付属高校過去問
この動画を見る 
PAGE TOP