2つの二次方程式 2025立教新座 - 質問解決D.B.(データベース)

2つの二次方程式 2025立教新座

問題文全文(内容文):
立教新座高等学校過去問

2つの2次方程式
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - kx - 10&=& 0 \\
x^2 + 5x + 2k&=& 0
\end{array}
\right.
\end{eqnarray}
が共通解を1つだけ持つ。
この共通解と定数$k$の値を求めよ。ただし$k\ne5$
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#立教新座高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
立教新座高等学校過去問

2つの2次方程式
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - kx - 10&=& 0 \\
x^2 + 5x + 2k&=& 0
\end{array}
\right.
\end{eqnarray}
が共通解を1つだけ持つ。
この共通解と定数$k$の値を求めよ。ただし$k\ne5$
投稿日:2025.02.09

<関連動画>

最初につまずく因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
最初につまずく因数分解の紹介
$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)$
この動画を見る 

平方根 泥臭く解くか華麗に解くか

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt {200} + \sqrt {300})(\sqrt {0.03} - \sqrt {0.02} -\sqrt {0.01})$

桐光学園高等学校
この動画を見る 

【数学】中高一貫校問題集2幾何133:円:接弦定理: 相似の証明2

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のように、円に内接する二等辺三角形ABCがあり、AB=AC=3cm、BC=2cmである。点Bにおける円の接線と辺ACの延長との交点をEとする。また、Cを通り辺ABに平行な直線が円と交わる点をD、BEと交わる点をFとする。
(1)△BCE∽△CFEであることを証明しなさい。
(2)線分CF、EFの長さをそれぞれ求めなさい。
この動画を見る 

福田のおもしろ数学143〜斜面の勾配

アイキャッチ画像
単元: #数学(中学生)#中3数学#大学入試過去問(数学)#三平方の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 
PAGE TOP