【数Ⅲ】積分法:楕円で構成された図形の面積 - 質問解決D.B.(データベース)

【数Ⅲ】積分法:楕円で構成された図形の面積

問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
2つの楕円$x^2+3y^2=4・・・①、3x^2+y^2=4・・・②$がある。
(1)2つの楕円の4つの交点の座標を求めよ。
(2)2つの楕円の内部の重なった部分の面積を求めよ。

(出典元)青チャート数学Ⅲより
チャプター:

0:00 オープニング
1:00 楕円のグラフを書く
5:55 積分の式を立てる
10:00 実際に面積を求めていく

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #チャート式#青チャートⅢ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
2つの楕円$x^2+3y^2=4・・・①、3x^2+y^2=4・・・②$がある。
(1)2つの楕円の4つの交点の座標を求めよ。
(2)2つの楕円の内部の重なった部分の面積を求めよ。

(出典元)青チャート数学Ⅲより
投稿日:2021.06.18

<関連動画>

【高校数学】毎日積分45日目~①まずは部分分数分解せよ~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\sqrt{2}}^{\sqrt{2}}\frac{8}{x^4+4}dx$
(1)部分分数分解せよ
この動画を見る 

数学「大学入試良問集」【19−17 こぼれた水の体積と定積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
水を満たした半径2の半球体の容器がある。
これを静かに$\alpha^{ \circ }$傾けたとき、水面が$h$だけ下がり、こぼれ出た水の量と容器に残った水の量の比が$11:5$になった。
$h$と$\alpha$を求めよ。
この動画を見る 

ハルハルさんの積分問題(2) 「誘導があっても難問:コナミコマンドを使いたい!!↑↑↓↓←→←→BA」

アイキャッチ画像
単元: #積分とその応用#定積分#その他
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sqrt[ 3 ]{ \cos\displaystyle \frac{x}{6}+2\sin\displaystyle \frac{x}{3}-\cos\displaystyle \frac{x}{2} }\ dx$
この動画を見る 

#高専数学#不定積分_13#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{\sqrt{ x+1 }-\sqrt{ x }}$

出典:高専数学 問題集
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
この動画を見る 
PAGE TOP