【中学数学】連立方程式の計算問題~標準レベル~【中2夏期講習②】 - 質問解決D.B.(データベース)

【中学数学】連立方程式の計算問題~標準レベル~【中2夏期講習②】

問題文全文(内容文):
$\displaystyle (1)\, \begin{cases}
3\times(x+y-1)-4y=5 \\
5x-3(2x-y-3)=17
\end{cases}
$
$\displaystyle (2)\, \begin{cases}
0.06x+0.04y=16 \\
x+y=300
\end{cases}
$
$\displaystyle (3)\, \begin{cases}
0.2x-0.3y=0.7\\
\frac{1}{4}x+\frac{1}{3}y=\frac{1}{6}
\end{cases}
$
$\displaystyle (4)\,
5x-4y-15=3x+2y-11=-2
$
$\displaystyle (5)\,\begin{cases}
-6ax + 5by = 9\\
4bx + 3ay = 26
\end{cases}の解がx=2, \,y=3のとき、a,bを求めよ。
$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\, \begin{cases}
3\times(x+y-1)-4y=5 \\
5x-3(2x-y-3)=17
\end{cases}
$
$\displaystyle (2)\, \begin{cases}
0.06x+0.04y=16 \\
x+y=300
\end{cases}
$
$\displaystyle (3)\, \begin{cases}
0.2x-0.3y=0.7\\
\frac{1}{4}x+\frac{1}{3}y=\frac{1}{6}
\end{cases}
$
$\displaystyle (4)\,
5x-4y-15=3x+2y-11=-2
$
$\displaystyle (5)\,\begin{cases}
-6ax + 5by = 9\\
4bx + 3ay = 26
\end{cases}の解がx=2, \,y=3のとき、a,bを求めよ。
$
投稿日:2022.08.08

<関連動画>

高校受験生よ。見よ。蝶ネクタイ形 面積が等しいと言われたら〇〇変形 一次関数 北海道

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 数学を数楽に
問題文全文(内容文):
△BPQ=△COQ
点Pの座標は?
*図は動画内参照

北海道
この動画を見る 

正八角形  大阪教育大学附属天王寺 予告問題Fが一個多かったです。申し訳ございませんでした。

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正八角形
斜線部の面積を求めよ
*図は動画内参照

大阪教育大学附属高等学校天王寺校舎
この動画を見る 

ビッグマックのチーズの値段ってなんぼ?

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ビッグマックを使って数学的に解説
この動画を見る 

中学入試なので三平方禁止!!(慶應中改)

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#過去問解説(学校別)#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
AH-AE = 2㎝
△AEH=?
*図は動画内参照

慶應義塾中等部
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 
PAGE TOP