【中学数学】連立方程式の計算問題~標準レベル~【中2夏期講習②】 - 質問解決D.B.(データベース)

【中学数学】連立方程式の計算問題~標準レベル~【中2夏期講習②】

問題文全文(内容文):
$\displaystyle (1)\, \begin{cases}
3\times(x+y-1)-4y=5 \\
5x-3(2x-y-3)=17
\end{cases}
$
$\displaystyle (2)\, \begin{cases}
0.06x+0.04y=16 \\
x+y=300
\end{cases}
$
$\displaystyle (3)\, \begin{cases}
0.2x-0.3y=0.7\\
\frac{1}{4}x+\frac{1}{3}y=\frac{1}{6}
\end{cases}
$
$\displaystyle (4)\,
5x-4y-15=3x+2y-11=-2
$
$\displaystyle (5)\,\begin{cases}
-6ax + 5by = 9\\
4bx + 3ay = 26
\end{cases}の解がx=2, \,y=3のとき、a,bを求めよ。
$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\, \begin{cases}
3\times(x+y-1)-4y=5 \\
5x-3(2x-y-3)=17
\end{cases}
$
$\displaystyle (2)\, \begin{cases}
0.06x+0.04y=16 \\
x+y=300
\end{cases}
$
$\displaystyle (3)\, \begin{cases}
0.2x-0.3y=0.7\\
\frac{1}{4}x+\frac{1}{3}y=\frac{1}{6}
\end{cases}
$
$\displaystyle (4)\,
5x-4y-15=3x+2y-11=-2
$
$\displaystyle (5)\,\begin{cases}
-6ax + 5by = 9\\
4bx + 3ay = 26
\end{cases}の解がx=2, \,y=3のとき、a,bを求めよ。
$
投稿日:2022.08.08

<関連動画>

【今年も全国で類題が出るよ】図形:栃木県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$は$AB=AC$の二等辺三角形である.
点$D$は辺$BA$の延長であり,$ \angle ACB=\angle ACD$である.
$ \triangle DBC \backsim \triangle DCA$であることを証明しなさい.

栃木県高校過去問
この動画を見る 

ビッグマックに連立方程式当てはめてみた

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

鈍角になることの証明 灘高校(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle ABI$ = $\angle IBC$ = x°
$\angle ACI$ = $\angle BCI$ = y° とおく

$\angle BIC$は鈍角になることを示せ
*図は動画内参照

灘高等学校(改)
この動画を見る 

【3分で数学が好きになる!?】連立方程式:中央大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 中央大学附属高等学校

連立方程式を求めなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x+y}{xy } = 10 \\
\displaystyle \frac{1}{ x }- \displaystyle \frac{1}{ y }=6
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

108度が決め手  算数オリンピック

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#その他#三角形と四角形#算数オリンピック
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle ADC =?$
*図は動画内参照

算数オリンピック
この動画を見る 
PAGE TOP