【エナドリ!】連立方程式:久留米大学附設高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【エナドリ!】連立方程式:久留米大学附設高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 久留米大学附設高等学校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{2x-3y}+\displaystyle \frac{2}{x+2y}=3 \\
\displaystyle \frac{3}{2x-3y}+\displaystyle \frac{2}{x+2y}=5
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附設高等学校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{2x-3y}+\displaystyle \frac{2}{x+2y}=3 \\
\displaystyle \frac{3}{2x-3y}+\displaystyle \frac{2}{x+2y}=5
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
投稿日:2020.12.11

<関連動画>

【これが入試問題…!?】確率:大阪教育大学附属高等学校平野校舎~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
Aさんは,98%の確率で予想を当てる天才スカウトマンBからスカウトされました.
そのことが嬉しくなりお母さんに相談しました.
そのときの会話の中の$ (1)~(8)$に当てはまる数を答えなさい.
ただし,$ (8)$は小数第一位までの概算で答えること.

母:そんなうまい話,あるはずないからやめときなさい.

A:最初はそう思ったけど,インターネットで調べてみたら,
Bさんって,98%の確率でメジャーデビューできるか
できないか予想を当てることができる天才スカウトマンなのよ.
 
 その人から声をかけられたのだから,ほぼ確定みたいなものだよ.

母:じゃあ実際に計算してみようか?

この100万人に対して,Bさんが予想した場合を考えてみると,
メジャーデビューできる100人のうちの$ (1)$人はBさんの予想が当たって,
$ (2)$人は外れるというわけね.

100万人のアイドル志望者のうち,メジャーデビューできない人は?

A:$ (3)$人

母:$ (3)$人のうちのBさんの予想が当たるのは$ (4)$人,
外れるのは$ (5) $人ということになるよね.

さあ ここからが問題です.

あなたのようにBさんに「※」と予想される人のうち,
 実際にメジャーデビューできる確率はいくらでしょう?

A:Bさんが「※」と予想する人というのは全部で$ (6)$人で,
そのうち実際にメジャーデビューできる人は$ (7) $人だからその確率は........。

 えーーーっ!$ (8)$%未満なの?

大阪教育大学附属高等学校平野校舎過去問


この動画を見る 

【中2数学/期末テスト対策】連立方程式の利用①

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1個100円のりんごと、1個150円のバナナを合わせて10個買うと、代金は1200円になりました。
りんごとバナナをそれぞれ何個買ったか求めなさい。
この動画を見る 

高等学校入学試験問題予想:法政大学第二高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#2次方程式#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
因数分解せよ.

(1)$(x-2y)^2+(x+y)(x-5y)+y^2$
(2)$a=\dfrac{1}{\sqrt5+1},b=\dfrac{1}{\sqrt5-1}$のとき,$(a-4b)(b-4a)=?$

$\boxed{2}$
1~5までの数字が書かれたカードが2枚ずつ合計10枚ある.

(1)これらのカードを袋に入れてその中から同時に2枚取り出すとき,カードの数字の積が偶数となる確率は?
(2)$n$の3以上の自然数$\dfrac{4}{\sqrt n-\sqrt2}$の整数部分が2であるとき,
$n$として考えられる値を全て求めよ.

$\boxed{3}$
$PQ$と$D$の交点を$R$とする.
点$P,Q$の$x$座標を$p,q$とする.
直線$PQ$の傾きが,$C,D$の比例定数$a$と等しく,$R$が線分$PQ$の中点となる.
(1)点$A$の座標を$a$で表せ.
(2)$p+q=?$
(3)点$R$の座標を$a$で表せ.
(4)$p.q$の値

法政第二高校過去問
この動画を見る 

良問!!

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDの面積=18㎠
四角形EFGHの面積=?
*図は動画内参照

2021秋田県
この動画を見る 

キレイな答え

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2015 \times 98 - 2014 \times 99 +2016$

関西大学第一高等学校
この動画を見る 
PAGE TOP