【For you動画-12】 高1-式の計算 (数Ⅰ) - 質問解決D.B.(データベース)

【For you動画-12】  高1-式の計算 (数Ⅰ)

問題文全文(内容文):
①0.51を分数で表すと?

◎$x$が次の値をとるとき、
$12-x1+1x+1l$の値は?
② $x=\sqrt{ 3 }$
③$x=\sqrt{ 5 }$

◎$x=\displaystyle \frac{\sqrt{ 5 }+ \sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }} ,y= \displaystyle \frac{\sqrt{ 5 }- \sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }} $のとき、次の値は?
④$x+y$
⑤$xy$
⑥$x^2+y^2$
⑦$x^3+y^3$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①0.51を分数で表すと?

◎$x$が次の値をとるとき、
$12-x1+1x+1l$の値は?
② $x=\sqrt{ 3 }$
③$x=\sqrt{ 5 }$

◎$x=\displaystyle \frac{\sqrt{ 5 }+ \sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }} ,y= \displaystyle \frac{\sqrt{ 5 }- \sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }} $のとき、次の値は?
④$x+y$
⑤$xy$
⑥$x^2+y^2$
⑦$x^3+y^3$
投稿日:2013.04.22

<関連動画>

「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
この動画を見る 

2023共通テスト数学 1A 第1問

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)#共通テスト
指導講師: 鈴木貫太郎
問題文全文(内容文):
第一問,
$\vert x+6 \vert \leqq 2$
$\Box \leqq x \leqq \Box$
$\vert (1-\sqrt3)(a-b)(c-d)+6 \vert 2$
$\Box \leqq (a-b)(c-d) \leqq \boxed{①}$
$(a-b)(c-d)=①$でさらに$(a-c)(b-d)=-3+\sqrt3 $なら $(a-d)(c-b)=\Box $

20232共通テスト過去問
この動画を見る 

一手間加えるだけで美味しい方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2+\frac{100}{x^2+1}=19$
この動画を見る 

連立3元3次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\lt y\lt z$とする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^2+y^2+z^2=38 \\\
x^3+y^3+z^3=144
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校数学】 数Ⅱ-116 和と積の公式①・積→和(差)編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin\alpha\cos\beta=①,\cos\alpha\sin\beta=②$

$\cos\alpha\cos\beta=③,\sin\alpha\sin\beta=④$

次の値を求めよう.

⑤$\sin75°\cos 15°$

⑥$\sin75°\sin45°$

⑦$\cos45°\cos75°$
この動画を見る 
PAGE TOP