【数学】2024年度第1回高2記述模試全問解説 - 質問解決D.B.(データベース)

【数学】2024年度第1回高2記述模試全問解説

問題文全文(内容文):
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。

大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ

大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。

大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。


大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。

大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
チャプター:

0:00 大問1
4:43 大問2-1
7:37 大問2-2
10:30 大問3
18:34 大問4
25:34 大問5
32:56 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。

大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ

大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。

大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。


大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。

大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
投稿日:2025.04.23

<関連動画>

【数Ⅲ】極限:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#全統模試(河合塾)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項$2p^2$、公比pの等比数列{$a_n$}がある。ただし、pは実数の定数とする。無限 等比級数$\displaystyle \sum_{n=1}^{\infty}a_n$が収束し、その和が1であるとき、次の問に答えよ。
(1)p の値を求めよ。
(2)母線の長さが1、高さがa[n]の円錐の体積を$V_n$とする。無限 級数$\displaystyle \sum_{n=1}^{\infty}V_n$は収束するか。収束するときはその和を求め、発散するとき はそのことを示せ。
(3)母線の長さが1、高さが$a_n$の円錐の側面積を$T_n$とす る。無限級数$\displaystyle \sum_{n=1}^{\infty}T_n$は収束するか。収束するときはその和を求め、発散 するときはそのことを示せ。
この動画を見る 

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)(a+3)³を展開せよ。
(2)(x-3)/(x²+x) + (x+9)/(x²+3x)を計算せよ。
(3)2次関数y=x²+2x (-2≦x≦2)における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。(7+3i)/(1+i)をa+bi (a,bは実数の形で表せ。 )
(5)0°≦θ<180°、sinθ+cosθ=1/2のとき、sinθ・cosθとcosθ-sinθを求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 ax²+2ax-2a+1≦0・・・①
│x-2│≦1・・・② がある。
ただし、aは0でない実数の定数とする。
(1)a=-1のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、AB=7、BC=8、CA=3とする。
(1)cos∠BACの値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、 sin∠BCP:sin∠CBP=1:3となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)z=0,1,2,3,4,5,6,7,8,9,10について、2^zを7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 7x=2^z+3・・・① を満たしている。0≦z≦10のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 (4x+3y)(x-y)=2^z・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。

大問6:三角関数
θの関数 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問3_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
この動画を見る 

【数学模試解説】2024年度第1回K塾マーク模試数Ⅰ,A(新課程)第一問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第一問

[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると

$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$

である。

(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である

(2)xについての連立不等式

$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$

を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。

オ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x$

カ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$  ② $\displaystyle \frac{1}{β}\lt x$

(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。

[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき

$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$

である。

△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき

$PC=\sqrt{ソ}$

である。

また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると

$CD= タ $

であり、

$∠ADC= チツ°$

である。

直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。

太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。

$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る 
PAGE TOP