【高校数学】 数A-34 内分と外分② - 質問解決D.B.(データベース)

【高校数学】 数A-34 内分と外分②

問題文全文(内容文):
$△ABC$の$\angle A$の二等分線と辺$BC$の交点を$P$とする.
→$AB:AC=①$

$△ABC(AB\neq AC)$の$\angle A$の外角の二等分線と
辺BCの延長との交点を$Q$とする.
→$AB:AC=②$

$AB=8,BC=6,CA=4$である$△ABC$において,
$\angle A$および外角の二等分線と,
直線$BC$との交点をそれぞれ$D,E$とする.

③線分$BD$の長さを求めよう.

④線分$BE$の長さを求めよう.

図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$△ABC$の$\angle A$の二等分線と辺$BC$の交点を$P$とする.
→$AB:AC=①$

$△ABC(AB\neq AC)$の$\angle A$の外角の二等分線と
辺BCの延長との交点を$Q$とする.
→$AB:AC=②$

$AB=8,BC=6,CA=4$である$△ABC$において,
$\angle A$および外角の二等分線と,
直線$BC$との交点をそれぞれ$D,E$とする.

③線分$BD$の長さを求めよう.

④線分$BE$の長さを求めよう.

図は動画内参照
投稿日:2016.04.10

<関連動画>

整数問題 昭和学院秀英

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
この動画を見る 

大学入試問題#39 東海大学医学部(2021) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$n:$自然数
$n^3+100$が$n+10$で割り切れるような最大の$n$の値を求めよ。

出典:2021年東海大学医学部 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

【意外と難しい⁈誰でも納得できる5分間!】図形:中央大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形の性質#高校入試過去問(数学)#数学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 中央大学附属高等学校

図のように長方形の 紙を折り返したとき
$\angle x$の大きさを 求めよ。

※図は動画内参照
この動画を見る 
PAGE TOP