福田の数学〜慶應義塾大学2024年医学部第1問(3)〜三角関数の増減とグラフと面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第1問(3)〜三角関数の増減とグラフと面積

問題文全文(内容文):
$\Large\boxed{1}$
(3) 関数$y$=$\cos x\sin 2x$ $\left(0≦x≦\displaystyle\frac{\pi}{2}\right)$の最大値は$\boxed{\ \ (け)\ \ }$である。また、この関数のグラフと$x$軸で囲まれてできる図形の面積は$\boxed{\ \ (こ)\ \ }$である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(3) 関数$y$=$\cos x\sin 2x$ $\left(0≦x≦\displaystyle\frac{\pi}{2}\right)$の最大値は$\boxed{\ \ (け)\ \ }$である。また、この関数のグラフと$x$軸で囲まれてできる図形の面積は$\boxed{\ \ (こ)\ \ }$である。
投稿日:2024.06.23

<関連動画>

福田の数学〜千葉大学2022年理系第6問〜独立に動く空間上の2点の距離の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。
実数$t$を用いて$t\ \overrightarrow{ OA }+\overrightarrow{ OB }$と表される点全体をlとする。また、平面xy平面上
の$y=x^2$を満たす点全体からなる曲線をCとする。
(1)曲線$C$上の点$P(a,a^2,0)$を固定する。l上の点Qを、$\overrightarrow{ OA }$と$\overrightarrow{ PQ }$
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。
(2)曲線C上の点Rとl上の点Sのうち、$|\overrightarrow{ RS }|$を最小にする点Rと点Sの
組み合わせを全て求めよ。また、そのときの$|\overrightarrow{ RS }|$の値を求めよ。

2022千葉大学理系過去問
この動画を見る 

防衛医大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{1+\sqrt{ 3 }i}{2},\beta=\displaystyle \frac{1-\sqrt{ 3 }i}{2}$

$\gamma=\displaystyle \frac{\beta^2-4\beta +3}{\alpha^{n+2}-\alpha^{n+1}+\alpha^{n}+\alpha^{3}-2\alpha^{2}+5\alpha-2}$

$\gamma^3$の値を求めよ

出典:2011年防衛医科大学校 過去問
この動画を見る 

大学入試問題#677「よく見る形となんか違う」  東京女子医科大学(2017) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{n^2}{m}+\displaystyle \frac{m}{n}=8$を満たす自然数の組$(m,n)$をすべて求めよ

出典:2017年東京女子医科大学 入試問題
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

工夫が大事!3次関数の決定【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
以下の4つの条件を満たす3次関数$f(x)$を求めよ。

( i )$f(0)=0,f(2)=1$

( ii )$0.2<f(1)<0.3$

( iii )$f(x)は極限値0をもつ$

(iv)$f(x)=0の解はすべて整数$
この動画を見る 
PAGE TOP