問題文全文(内容文):
右の図のように、2点A、Bは2円の交点であり、2点P、QはAを通る直線が2円と交わる点である。また、P、Qにおいて、それぞれ円の接線を引き、その交点をCとする。このとき、4点B、C、P、Qは1つの円周上にあることを証明しなさい。
右の図のように、2点A、Bは2円の交点であり、2点P、QはAを通る直線が2円と交わる点である。また、P、Qにおいて、それぞれ円の接線を引き、その交点をCとする。このとき、4点B、C、P、Qは1つの円周上にあることを証明しなさい。
チャプター:
0:00 オープニング
0:05 問題文
0:25 アプローチ
1:35 証明
2:43 エンディング
単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、2点A、Bは2円の交点であり、2点P、QはAを通る直線が2円と交わる点である。また、P、Qにおいて、それぞれ円の接線を引き、その交点をCとする。このとき、4点B、C、P、Qは1つの円周上にあることを証明しなさい。
右の図のように、2点A、Bは2円の交点であり、2点P、QはAを通る直線が2円と交わる点である。また、P、Qにおいて、それぞれ円の接線を引き、その交点をCとする。このとき、4点B、C、P、Qは1つの円周上にあることを証明しなさい。
投稿日:2023.11.25