【高校受験対策/数学/難解死守2】 - 質問解決D.B.(データベース)

【高校受験対策/数学/難解死守2】

問題文全文(内容文):
高校受験対策・難解死守2

①2次方程式$(2x-3)^2+2(2x-3)-15=0$を解け。

②$\sqrt{3}+\sqrt{2}y=1$、$\sqrt{2}x+\sqrt{3}y=\sqrt{6}$のとき、$x^2-y^2$の値を求めよ。

③ビーカーAには$x$%の食塩水300g、ビーカーBには8%の食塩水350gがそれぞれ入っている。
AとBに入っている食塩水をすべて混ぜ合わせたところ11%の食塩水ができた。
このとき、$y$を$x$の式で表しなさい。

④$a=-3$、$b=5$のとき、$(\frac{3}{4}a^3b)^3 \times (-\frac{1}{9}ab^2)^2 \div (-\frac{5}{128}a^7b^6)$の値を求めよ。

⑤の小数部分を$x$とするとき、$x^3+21x^2+x-19$の値を求めなさい。

⑥右の図のように、$\angle DAB=\angle ABC=\angle ACB=36°$である$△ABC$がある。
このとき辺$AB$の長さを求めよ。

単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守2

①2次方程式$(2x-3)^2+2(2x-3)-15=0$を解け。

②$\sqrt{3}+\sqrt{2}y=1$、$\sqrt{2}x+\sqrt{3}y=\sqrt{6}$のとき、$x^2-y^2$の値を求めよ。

③ビーカーAには$x$%の食塩水300g、ビーカーBには8%の食塩水350gがそれぞれ入っている。
AとBに入っている食塩水をすべて混ぜ合わせたところ11%の食塩水ができた。
このとき、$y$を$x$の式で表しなさい。

④$a=-3$、$b=5$のとき、$(\frac{3}{4}a^3b)^3 \times (-\frac{1}{9}ab^2)^2 \div (-\frac{5}{128}a^7b^6)$の値を求めよ。

⑤の小数部分を$x$とするとき、$x^3+21x^2+x-19$の値を求めなさい。

⑥右の図のように、$\angle DAB=\angle ABC=\angle ACB=36°$である$△ABC$がある。
このとき辺$AB$の長さを求めよ。

投稿日:2020.01.19

<関連動画>

文字式:久留米大学付属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附属高等学校

$a=\sqrt{ 3 }+\sqrt{ 15 }$
$b=\sqrt{ 3 }-\sqrt{ 15 }$
のとき
→$\displaystyle \frac{a^2-ab+b^2}{a^2+ab+b^2}$
の値を求めよ。
この動画を見る 

○か✖️か 2021 中大横浜 B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正しいものをすべて選べ
(ア)$\frac{-4+2\sqrt 3}{2} = -2+2\sqrt 3$
(イ)1は素数である
(ウ)$\sqrt{1.69}$は有理数
(エ)$\frac{3}{0}=0$である
(オ)$\sqrt 9 + \sqrt{16} = \sqrt{25}$

2021中央大学附属横浜高等学校
この動画を見る 

【高校受験対策】数学-規則性8

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・規則性8

Q.
形も大きさも同じ半径1cmの円盤がたくさんある。
これらを図1のように、縦m枚、横n枚(m,nは3以上の整数)の長形状に並べる。
このとき4つの角にある円盤の中心を結んでできる図形は長方形である。
さらに図2のように、それぞれの円盤は$x$で示した、点で他の円盤と接しており、ある円盤が接している円盤の枚数をその円盤に書く。
例えば、図2はm=3、n=4の長方形状に円盤を並べたものであり、
円盤Aは2枚の円盤と接しているので、円盤Aに書かれる数は2となる。
同様に円盤Bに 書かれる数は3、円盤Cに書かれる数は4となる。
また、m=3、n=4の長方形状に円盤を並べた とき、すべての円盤に他の円盤と押している枚数をそれぞれ書くと、図3のようになる。

①m=4、n=5のとき、3が書かれた円盤の枚数を求めなさい。

②m=5、n=6のとき、円盤に書かれた数の合計を求めなさい。

③m=$x$、n=$x$のとき、円盤に書かれた数の合計は440であった。
このとき$x$の値を求めなさい。

④の文のⅠ、Ⅱ、Ⅲに当てはまる数を求めなさい。ただしa,bは20以上の整数で、a \lt bとする。
m=a+1、n=b+1として、円盤を図1のように並べる。
4つの角にある円盤の中心を結んでできる長方形の面積が780$cm^2$となるとき、
4が書かれた円盤の枚数はa=(Ⅰ)、b=(Ⅱ)のとき最も多くなり、その枚数は(Ⅲ)枚である。
この動画を見る 

【手順は限られるのか】因数分解:江戸川学園取手高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$a^2-4b^2+12bc-9c^2$を因数分解しなさい.

江戸川学園取手高等学校
この動画を見る 

【3分で統計の基礎力アップ!】統計:鹿児島県公立高校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#鹿児島県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 鹿児島県の公立高校

平均を求めよ。
ヒストグラムを選べ。
※資料の整理と活用標本調査
※表は動画内参照
この動画を見る 
PAGE TOP