福田の1.5倍速演習〜合格する重要問題063〜早稲田大学2019年度理工学部第3問〜ガウス記号と極限 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題063〜早稲田大学2019年度理工学部第3問〜ガウス記号と極限

問題文全文(内容文):
$\boxed{3}$ 実数xに対し、[x]をx-1<[x]≦xを満たす整数とする。次の極限を求めよ。
(1)$\displaystyle\lim_{n \to \infty}\frac{1}{n}\left[\frac{1}{\sin\frac{1}{n}}\right]$
(2)$\displaystyle\lim_{n \to \infty}\frac{1}{n\sqrt n}(1+[\sqrt 2]+[\sqrt 3]+\cdots+[\sqrt n])$

2019早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$ 実数xに対し、[x]をx-1<[x]≦xを満たす整数とする。次の極限を求めよ。
(1)$\displaystyle\lim_{n \to \infty}\frac{1}{n}\left[\frac{1}{\sin\frac{1}{n}}\right]$
(2)$\displaystyle\lim_{n \to \infty}\frac{1}{n\sqrt n}(1+[\sqrt 2]+[\sqrt 3]+\cdots+[\sqrt n])$

2019早稲田大学理工学部過去問
投稿日:2023.01.17

<関連動画>

【数Ⅲ】【関数】2つの関数 y=√(x+1), y= x+ kのグラフの共有点の個数を調べよ。

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの関数
$y=\sqrt{x+1}$
$y=x+k$
のグラフの共有点の個数を調べよ。
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(11)

$y=\frac{x^3}{x^2-1}$ のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 

【高校数学】数Ⅲ-78 関数の極限③(右側左側)

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to -0}\dfrac{\vert x \vert}{x}$

②$\displaystyle \lim_{x\to 3+0}\dfrac{x^2-3x}{\vert x-3 \vert}$

③$\displaystyle \lim_{x\to 1-0}\dfrac{\vert x-1\vert}{x^3-1}$

④$x\to 0$のときの$\dfrac{x}{\vert x\vert}$
この動画を見る 

高専数学 微積II #61(1)(2) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dz}{dt}$を求めよ.

(1)$z=\sin (3x+2y)$
$x=\dfrac{1}{t},y=\sqrt t$

(2)$z=\log(2x^2+xy+5y^2)$
$x=\cos t,y=\sin t$
この動画を見る 
PAGE TOP