対数不等式 - 質問解決D.B.(データベース)

対数不等式

問題文全文(内容文):
これを解け.
${\log_{10}(-x)}^2-\log_{10}x^2 \gt 3$
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
${\log_{10}(-x)}^2-\log_{10}x^2 \gt 3$
投稿日:2021.12.11

<関連動画>

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。

大阪大過去問
この動画を見る 

2021東京女子医大 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は実数であり,$x\gt 0,y\gt 0$である.
$xy^{1+\log_2 x^2}=1$を満たすとき,$xy$のとりうる値の範囲を求めよ.

2021東京女子医大過去問
この動画を見る 

福田の数学〜京都大学2022年理系第1問〜対数の値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 5.4 \lt \log_42022 \lt 5.5であることを示せ。ただし、0.301 \lt \log_{10}2 \lt 0.3011で\\
あることは用いてよい。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

三重大学 対数方程式 整数解の個数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)数列\left\{a_n\right\}が次の条件を満たしている。\hspace{30pt}\\
(\textrm{i})a_1=a_2=4\hspace{110pt}\\
(\textrm{ii})a_{n+2}=a_n^{\log_2a_{n+1}}\ \ \ (n=1,2,3,\ldots)\hspace{19pt}\\
このとき、\log_2(\log_2a_{10})=\boxed{\ \ ア\ \ }である。
\end{eqnarray}

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP