慶應義塾大 指数方程式の解の個数 - 質問解決D.B.(データベース)

慶應義塾大 指数方程式の解の個数

問題文全文(内容文):
$8^x-3a4^x+4a=0$の実数解の個数を求めよ.$a$は実数である.

1997慶應(経)過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-3a4^x+4a=0$の実数解の個数を求めよ.$a$は実数である.

1997慶應(経)過去問
投稿日:2020.09.03

<関連動画>

【数学A】合同式を用いた証明

アイキャッチ画像
単元: #数A#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
3つの整数$a,b,c$が$a^2+b^2=c^2$を満たす。
$a,b$のうち、少なくとも1つは3の倍数であることを示せ。
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(2)〜正八面体に内接する立方体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#立体図形#立体切断#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$a$は$a\gt 0$を満たす実数とする。

$xyz$空間に$6$点$(a,0,0),(0,a,0),(0,0,a),$

$(-a,0,0)(0,-a,0)(0,0,-a)$を頂点とする多面体

$S$がある。

(i)$S$の体積は$\boxed{オ}$である。

(ii)立方体$U$のすべての頂点が$S$の辺上にあるとき、

$U$の体積は$\boxed{カ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面の第1象限内において、直線$l:y=mx (m \gt 0)$とx軸の両方に
接している半径aの円をCとし、円Cの中心を通る直線$y=tx (t \gt 0)$を考える。
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。
ただし、$b \gt a$とする。
(1)mを用いてtを表せ。
(2)tを用いて$\frac{b}{a}$を表せ。
(3)極限値$\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)$を求めよ。

2022東北大学理系過去問
この動画を見る 

王道の整数問題 産業医科大学2024 大学入試問題#927

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\dfrac{b^2}{a}+\dfrac{a}{b}=6$を満たす
自然数の組$(a,b)$のうち$a+b$の最小値を求めよ.

2024産業医科大学過去問題
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP