問題文全文(内容文):
$\boxed{4}$ $0\leqq \theta \leqq \pi$とする.
$y=\sin\theta+\sin 2\theta+\cos\theta+1$
の最大値と$\theta$の値を求めよ.
$\boxed{4}$ $0\leqq \theta \leqq \pi$とする.
$y=\sin\theta+\sin 2\theta+\cos\theta+1$
の最大値と$\theta$の値を求めよ.
単元:
#数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$ $0\leqq \theta \leqq \pi$とする.
$y=\sin\theta+\sin 2\theta+\cos\theta+1$
の最大値と$\theta$の値を求めよ.
$\boxed{4}$ $0\leqq \theta \leqq \pi$とする.
$y=\sin\theta+\sin 2\theta+\cos\theta+1$
の最大値と$\theta$の値を求めよ.
投稿日:2021.02.06





